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Abstract—Multi-modal classification (MMC) aims to integrate the complementary information from different modalities to improve
classification performance. Existing MMC methods can be grouped into two categories: traditional methods and deep learning-based
methods. The traditional methods often implement fusion in a low-level original space. Besides, they mostly focus on the inter-modal
fusion and neglect the intra-modal fusion. Thus, the representation capacity of fused features induced by them is insufficient. The deep
learning-based methods implement the fusion in a high-level feature space where the associations among features are considered,
while the whole process is implicit and the fused space lacks interpretability. Based on these observations, we propose a novel
interpretative association-based fusion method for MMC, named AF. In AF, both the association information and the high-order
information extracted from feature space are simultaneously encoded into a new feature space to help to train an MMC model in an
explicit manner. Moreover, AF is a general fusion framework, and most existing MMC methods can be embedded into it to improve their
performance. Finally, the effectiveness and the generality of AF are validated on 22 datasets, four typically traditional MMC methods
adopting best modality, early, late and model fusion strategies and a deep learning-based MMC method.

Index Terms—Multi-modal fusion, association-based fusion, interpretative fusion, multi-modal classification, association
representation.

F

1 INTRODUCTION

RAPID progress in tools of data acquisition (mobile
phone, sensor) and approaches of feature extraction

(SIFT, HOG, CNNs) bring a challenging task: multi-modal
machine learning. It aims to build models that can process
the related information from multiple modalities [1]. In
many real-world applications, there exist numerous multi-
modal data scenes. For example, in a multimedia classifica-
tion system, multimedia may contain images, texts, audios,
and videos. Besides, there is a type of generalized multi-
modal data that are obtained by extracting multiple groups
of features from raw data using different feature extraction
methods [2]. For example, one can extract scale invariant
feature transform (SIFT), histogram of oriented gradients
(HOG), and local binary pattern (LBP) from images; Mel
frequency cepstral coefficients (MFCCs) and wavelet from
audio; BOW, term frequency-inverse document frequency
(TF-IDF) and word2vec from texts; histogram of optical flow
(HOF) and HOG3D from videos.

Fusion is identified as one of five core technical chal-
lenges (other four challenges are representation, translation,
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Fig. 1: Some association relationship forms existing between feature
variables, are measured by different methods: Pearson Correlation (PC),
Normalized Mutual Information (NMI), Neighborhood Similarity (NS)
[3], Distance Correlation (DC) [4], and Maximal Information Coefficient
(MIC) [5].

alignment, and co-learning) in multi-modal machine learn-
ing [1]. Also, it plays a critical and fundamental role in many
multi-modal applications [6], [7], [8], [9].

The existing studies mainly adopt three inter-modal
fusion strategies: early fusion (i.e., feature-level), late fusion
(i.e., decision-level) and model-based fusion. (1) Early fusion
methods integrate features immediately after they are ex-
tracted [10], [11], [12]. (2) Late fusion methods use unimodal
decision values and fuse them [13], [14]. (3) Model-based
fusion methods are specially designed to perform multi-
modal problems where multiple features are fused in the
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process of model optimization. Among the types of method-
s, the multi-kernel learning is one of the representatives [15],
[16]. The existing studies mainly adopt two typical intra-
modal fusion submodels: the multilayer perceptron (MLP)
and attention that model the interactions among features
via the fully-connected layers with Relu activation and the
scaled dot-product attention function, respectively [17], [18].

The above MMC methods have achieved great success in
MMC tasks, nonetheless, they may suffer from some of three
issues (the traditional MMC methods mainly encounter the
first two issues; the deep learning-based MMC methods
mainly encounter the third issue):

1) Ignoring the use of the association information
between features: Many MMC methods mainly fo-
cus on the inter-modal fusion and neglect the intra-
modal fusion due to a common assumption that the
intra-modal features are independent on each other
for simplicity in modeling, which is however not
guaranteed in real applications. As a result, these
methods ignore the associations among features in
the process of feature fusion, wasting much useful
information. Nonetheless, studies like [19], [20] have
shown that rich association forms exist between
feature variables. Fig. 1 illustrates some widely-
studied relationship forms [21], [22] and many effec-
tive approaches to detecting them have been devel-
oped [3], [4], [5]. Moreover, some studies like [23],
[24] have demonstrated that machine learning such
as multi-label learning, multi-instance multi-label
learning can benefit from the use of the correlations
among class variables to improve the generalization
performance of the induced predictive model. So, a
natural idea is that the associations bewteen input
feature variables may provide helpful extra infor-
mation for MMC. Consequently, it is desirable to
utilize the associations between features for fusing
multi-modal features for improving the discrimina-
tive ability of data.

2) Ignoring the use of high-order information: Exist-
ing MMC methods often implement feature fusion
in the original data space, a low-order representa-
tion of data [25]. Thus, the representation capacity
of fused features induced by existing methods is
insufficient, limiting the final system performance.
Note that some studies (e.g. [26], [27]) have shown
that the high-order information of data has superior
representation capacity. Also, one of the key factors
of the success of deep learning is that the non-
linear ability of features is improved using some
non-linear functions such as Relu, Sigmoid [28].
The high-order features can be regarded as a non-
linear representation of the original features. These
observations inspire us to introduce the beneficial
high-order information into the original space. In
the new representation space enhanced by the high-
order information, an association mining method is
capable of capturing the more complex associations
between features. Thus, it is desirable to exploit
the high-order information to further improve the
performance of MMC.

3) Lacking of interpretability and data-hungry: Deep
learning-based MMC methods achieve the intra-
modal fusion using a submodel such as multilayer
perceptron (MLP) or attention [18], [29]. The process
not only obtains the high-level features, but also
models the implicit associations among features. N-
evertheless, deep learning-based MMC models have
two well-known issues: lacking of interpretability
and data-hungry. On the one hand, deep learning is
considered as a black box model due to the difficulty
in interpreting their inner mechanisms [30], [31].
Accordingly, the process of the intra-modal fusion
that is implemented using them lacks interpretabili-
ty. On the other hand, it is well known that training
a deep neural network requires a huge amount of
data [32], disabling the them-based MMC methods
to be directly applied to tasks with small-scale data.
However, few-shot learning boom shows that tasks
with small-scale data still are commonly found in
many applications. Hence, it is desirable to design
a fusion method that is interpretable and still effec-
tively work on small-scale data.

To solve the above three issues, we propose a novel inter-
pretative feature fusion method by simultaneously exploit-
ing the high-order information of data and the association
information between features in an interpretable manner.
Firstly, the modified high-power values of each feature
are concatenated to enrich original features. After that, the
concatenated features are fused with a relationship fusion
matrix revealing the associations between any two features.
In this way, both the high-order information and association
information extracted from the feature space are encoded
into a new feature space. AF has the following features.

� AF provides a simple yet effective way of introduc-
ing association approaches into the process of feature
fusion for MMC. An association approach, often de-
veloped in the community of statistic analysis, can be
readily incorporated into multi-modal fusion in the
framework AF for solving MMC.

� Nonlinear techniques can be incorporated into AF for
boosting the representation capacity of the original
features and enriching the association forms between
features.

� The fusion process is interpretative, i.e., its inner
workings are transparent.

Fig. 2 shows the differences between our proposed AF
and the existing MMC methods.

In summary, we have made the following contributions.

1) An interpretative multi-modal fusion method,
named AF, is proposed by exploiting the associ-
ation information between features and the high-
order information of features. AF is a general fusion
framework and can be coupled into any existing
MMC models.

2) In the paper, we develop five MMC methods: AFB ,
AFC , AFU , AFMKL and AFSelf�MM by integrating
the AF into four typically traditional MMC methods
that respectively adopt best modality, early, late and
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Fig. 2: The differences between our proposed AF and the existing MMC methods

model fusion strategies and one deep learning-based
MMC method.

3) Extensive empirical experiments are conducted to
show the superiority and robustness of the AF and
the desired performance gains are achieved.

The remainder of this paper is organized as follows:
Section 2 surveys different modality fusion methods for
MMC. Section 3 details the AF method. Section 4 presents
the performance evaluation of the proposed method against
corresponding methods on extensive real datasets. Finally,
we draw conclusions in Section 5.

2 PRELIMINARIES

In this section, we first state the MMC, then detail four
typical inter-modal fusion strategies and two typical intra-
modal fusion strategies.

2.1 MMC

MMC aims to build models that can process multi-modal
data so that it can achieve a better classification performance
and make the system more robust [33].

Formally, let X = Rm1 � Rm2 � � � � � RmP denote the
instance space (or feature space) of P modality representa-
tion, where mp(1 � p � P ) is the feature dimension of pth

modality and Y = fl1; l2; � � � ; lqg denotes the label space
with q class labels. Denote D as an unknown distribution
over X � Y . A training set D = f(xxxpi ; yi)j1 � p � P; 1 �
i � ng 2 (X � Y)n is drawn identically and independently
according to D, where xxxpi = (xpi1; x

p
i2; � � � ; x

p
imp

) 2 Rmp

is the pth modality feature vector with dimension mp and
yi 2 Y is the known label associated with xxxpi . The task of
MMC is to learn an MMC predictive function f : X 7! Y
from D which can assign proper label f(xxx) 2 Y for an
unseen instance xxx. An MMC learner can be denoted as a
two-tuple L = (h;F), where h is a learned decision function
(also called a base classifier in this paper), and F that takes
the output of h or feature vectors, is a fusion function.

2.2 Four Typical Inter-Modal Fusion Strategies

To improve the model performance by making full use of
the multi-modal data, four typical fusion strategies: early
fusion, late fusion, model-based fusion and best fusion, have
been proposed.

Early fusion integrates features immediately after they
are extracted. After that, the integrated features are viewed
as inputs coming into a single classifier. This process can be
formalized as the following optimization problem.

min
1

n

nX
i=1

‘(h(F(xxx1
i ;xxx

2
i ; : : : ;xxx

P
i )); yi); (1)

where F can be concatenation [10], element-wise addition
[34], attention [35], and so on. Because of the simplicity
and effectiveness of early fusion, it has been widely used
in methods. For example, Liang et al. [7] proposed an
evolutionary deep fusion algorithm (EDF) and EDF is able
to automatically learn a proper fusion scheme that consists
of multiple basic fusion operators for fusing multi-modal
information. Wang et al. [36] proposed the ARTNets model
to classify videos by concatenating the appearance and
relation information into a vector, then directly feeding the
concatenated vector into a classification module; Yu et al.
[37] proposed a generalized multi-modal factorized bilinear
pooling approach to fuse both the image features and text
features at the level of features for visual question answer-
ing. In summary, the early fusion strategy main drawback is
that all modalities are usually required to be available.

Late fusion first needs to train P classifiers fhpgPp=1 on
P modality data fDpgPp=1, respectively. Then P unimodal
decision values fhp(xxxpi )gPp=1 are fused using a fusion mech-
anism F . This process can be formalized as the following
optimization problem.

F(fmin
1

n

nX
i=1

‘(hp(xxx
p
i ); yi)g

P
p=1); (2)

where F can be averaging scheme, minimizing scheme or
voting scheme. Note that when F is the minimizing scheme,
i.e., choosing one modality with the best performance as the
final fusion result. In this case, late fusion is the so-called
best fusion.

It is more appropriate in two cases that some modal-
ities may miss (robustness) and a new modality emerges
in the future (scalability). Because of the two advantages,
there is much work done using this fusion strategy. For
example, Han et al. [13] proposed a rusted multi-modal
classification method, and this method uses the Dempster-
Shafer theory to combine the classification results of each
modality by weighting them; Bird et al. [14] proposed a
multi-modal scene classification for autonomous machines,
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and this method uses a higher-order function to perform
late fusion.

In summary, the main drawback of the late fusion strat-
egy is that it ignores the dependency among the features
from different modalities due to the construction of multiply
separate classifiers.

Model-based fusion methods are specially designed to
perform the multi-modal fusion. More precisely, the fusion
process is implemented in a learning manner. It can be
formalized as the following optimization problem.

min
1

n

nX
i=1

‘(F(h1(xxx1
i ); h2(xxx2

i ); � � � ; hP (xxxPi )); yi); (3)

where F usually adopts multiple kernel learning (MKL)
[15], [16], [38] or graphical models [39], [40].

In this study, we use MKL that provides a natural way
to unify the representation of multiple features by learning
a combination of multiple kernel functions. As a representa-
tive of model-based fusion method, MKL has been applied
to many applications. For example, Zhang et al. [15] aimed
to improve the classification performance of glioblastoma
multiforme prognosis and proposed a histopathological in-
tegrating multiple kernel learning method to efficiently fuse
both histopathological images and multi-omics data; Salim
et al. [16] developed a MKL graph classification method
where the method first constructs a graph kernel for each
graph view and then use the simpleMKL approach to fuse
these graph kernels. Hu et al. [41] improved the classi-
fication performance of MMC from the feature selection
viewpoints by constructing a multi-kernel fuzzy rough set.
More related work can refer to [42].

In summary, solving the MKL problem is usually time-
consuming. However, the optimized combination coeffi-
cients can be used to understand which features are impor-
tant for discrimination.

2.3 Two Typical Intra-Modal Fusion Strategies

Intra-modal fusion aims to model interactions among fea-
tures in each modality. The MLP and attention are two very
popular techniques for this purpose. Gao et al. [17] proposed
a dynamic attention mechanism for modeling intra-modal
relations. This is the first unified framework for simultane-
ously modeling inter-modal and dynamic intra-modal infor-
mation in the VQA task. Wu et al. [29] exploited fragment
relations in images/texts via a self-attention mechanism
for improving image-text matching performance. Yao [43]
modeled intra-modal object-to-object relations for improv-
ing image captioning performance. Yu [18] proposed a deep
multi-modal neural architecture search method where a self-
attention, a two-layer MLP and a relation self-attention are
used as three intra-modal fusion operators. In summary, the
intra-modal fusion is indeed helpful for performance gain in
different multi-modal tasks. However, they often encounter
the issues of lacking of interpretability and data-hungry that
have been analysed in the third issue in Section 1.

3 THE PROPOSED AF APPROACH

For convenience, we list out the used notations in Table 1.

TABLE 1: Notations

Symbol Explanation
P 2 R The number of modalities
n 2 R The number of examples
mp 2 R The number of features of pth modality
L 2 R The feature boosting rate
xxxp

i 2 Rmp The ith example from original feature space
�p(xxxp

i ) 2 RmLp The ith example from boosting feature space
c(xxxp

i ) 2 RmLp The ith example from fused feature space
D 2 Rn�m The original dataset
E 2 Rn�mL The boosting dataset
C 2 Rn�mL The intra-modal fusion dataset
R 2 RmL�mL The relationship matrix

www = [
1

1
;

1

2
; � � � ;

1

L| {z }
m

] 2 RmL The constant vector

W = (wi)n�1 2 Rn�(mL) The constant matrix
A 2 Rp�q 
B 2 Rp�q The Hadamard product of matrix A and B
A 2 Rp�lB 2 Rl�q The matrix multiplication of matrix A and B

(a) Original feature space (b) AF feature space

Fig. 3: The scatter plot on Iris in the original space and the AF space

First, we take the Iris dataset for example to detail a fact
that feature variables often depend on each other in the form
of some relationships such as linearity, exponent, sinusoid.
Iris consists of 150 examples each of which is described
by four features denoted as A = fa1; a2; a3; a4g. These
examples are from 3 categories each of which includes 50 ex-
amples. The relationship between any two features in A can
be observed by drawing a scatter plot. The relationship plots
in the original space (the diagonal axes show the univariate
distribution of the data) are shown in Fig. 3(a). We can
observe that an obvious linear relationship exists between
a3 and a4, a monotonous relationship exists between a1 and
a3. Thus, it is necessary to model the relationships between
features, instead of ignoring them.

3.1 The Procedure of AF
Given a containing n MMC training examples set D =
f(xxxpi ; yi)j1 � p � P; 1 � i � ng described by P modalities
simultaneously, it also can be denoted as D = fDpj1 � p �
Pg where Dp = f(xxxpi ; yi)gni=1.

As shown in Fig. 2, the main difference between AF
and the existing MMC methods is whether the associations
between the intra-modal features are used in the process
of feature fusion. Thus, we take any modality data Dp for
example to detail the procedure of AF. To facilitate discus-
sion, we give a dataset in the table form, which is shown in
Table 2 where apk denotes kth feature under pth modality and
apk(xi) denotes the value of the example xi under the feature
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TABLE 2: Original dataset D

ap
1 ap

2 � � � ap
k � � � ap

mp�1 ap
mp

x1 ap
1(x1) ap

2(x1) � � � ap
k(x1) � � � ap

mp�1(x1) ap
mp (x1)

x2 ap
1(x2) ap

2(x2) � � � ap
k(x2) � � � ap

mp�1(x2) ap
mp (x2)

...
...

...
. . .

...
. . .

...
...

xn ap
1(xn) ap

2(xn) � � � ap
k(xn) � � � ap

mp�1(xn) ap
mp (xn)

TABLE 3: Boosting dataset Ep

ep
1 ep

2 � � � ep
j � � � ep

mpL�1 ep
mpL

x1 ep
1(x1) ep

2(x1) � � � ep
j (x1) � � � ep

mpL�1(x1) ep
mpL(x1)

x2 ep
1(x2) ep

2(x2) � � � ep
j (x2) � � � ep

mpL�1(x2) ep
mpL(x2)

...
...

...
. . .

...
. . .

...
...

xn ep
1(xn) ep

2(xn) � � � ep
j (xn) � � � ep

mpL�1(xn) ep
mpL(xn)

apk. In this Table, the pth modality feature vector of the
example xi is denoted as xxxpi = [ap1(xi); a

p
2(xi); � � � ; apmp

(xi)]
in the original space. Note that apj (xi) and epj (xi) will be
simplified as apj and epj , when the meaning of xi is clear.

To make the best use of association information between
features in the process of feature fusion, we introduce a new
data-representation scheme called AF where the association
information between features is encoded into the feature
space. AF learns from the original data representation D
by taking two elementary steps, i.e. feature boosting and
association-based fusion.

In the first step, AF aims to model the high-order infor-
mation of features, meanwhile, improve the nonlinear repre-
sentation ability of original data. To achieve this, the power
of each feature value is encoded into the original feature
space. Due to simplicity and effectiveness, many studies
(e.g. [44], [45]) adopt the method to increase the expressional
ability of data. Other methods like kernel function also can
be further used. Specifically, a mapping �p : Dp 7! Ep
from the original mp-dimension input space to the mpL-
dimension space is created as follows:

�p(xxx
p
i ) = [ep1; e

p
2; � � � ; e

p
j ; � � � ; e

p
mpL

]; (4)

where epj = (apk)l denotes the lth power of the value apk,
l = j � L(k � 1), and 1 � k � mp where k denotes the kth

feature. L denotes feature boosting rate, i.e. the maximal
power of apk(xi), and it is a hyper-parameter. Then, the
original Dp 2 D is transformed into:

Ep = f(�p(xxxpi ); yi)j(xxx
p
i ; yi) 2 Dpg; (5)

In this method, an object xi is described by a set of new
dimensions fepj j1 � j � mpLg. Ep is shown in Table 3.
Furthermore, the original MMC dataset D is transformed
into E = fE1; E2; � � �EP g.

In the second step, AF aims to fuse dependent features
with associations between them in an explicit manner. To
this end, we need to define a relationship fusion matrix
based on the boosting data Ep.

Definition 1. (Relationship fusion matrix) R is a relationship
fusion matrix shown in Eq. (6) if it satisfies the following
conditions:

1) Each element r(ei; ej) represents the relationship
between feature ei and ej .

2) All pair-wise feature relationships must be con-
tained.

R = fr(ei; ej)gmL;mL (6)

A widely-used index to measure the relationship be-
tween features is Pearson correlation coefficient defined by

�(ei; ej) =
cov(ei; ej)

�ei
�ej

=
E[(ei � �ei)(ej � �ej )]

�ei
�ej

(7)

where �ei
and �ej

are the standard deviations of ei and
ej , respectively, and �ei

and �ej
are the means of ei and ej ,

respectively. In this study, we construct a relationship fusion
matrix by r(ei; ej) = �(ei; ej). Other methods such as DC
[4], MIC [5], MNC [22] and MICe [20], also can be used.
Subsection 4.3.2 will further discuss this issue.

In what follows, we discuss the problem that how to
fuse the features in Ep with Rp. Specifically, a mapping ’ :
Ep 7! Cp from the original mpL-dimension input space to
the mpL-dimension space is created as follows:

’p(�p(xxx
p
i )) = [cp1(xi); c

p
2(xi); � � � ; cpj (xi); � � � ; c

p
mpL

(xi)]
(8)

Note that the larger the dimension boosting rate L is,
the richer the diversity of relationships becomes. But it is
unrealistic that L takes +1. Inspired by Taylor series form,
we employ the following fusion strategy:

cpj (xi) =

mp�1X
t=0

1

1!
Rk1je

p
k1

(xi) +

mp�1X
t=0

1

2!
Rk2je

p
k2

(xi) + � � �+

mp�1X
t=0

1

(n)!
Rknje

p
kn

(xi) + � � �

=
1X
k=1

wkRkje
p
k(xi) =

mpLX
k=1

wkRkje
p
k(xi) + �

�
mpLX
k=1

wkRkje
p
k(xi) = (wwwT 
R:j)�p(xxx

p
i );

(9)

where www = [w1; w2; � � � ; wk; � � � ; w(mpL�1); wmpL] =
[1=(1!); 1=(2!); � � � ; 1=(L!)| {z }

mp

] 2 RmpL, ki = tL+i, R:j denotes

the jth column of relationship fusion matrix R, � is an
infinitesimal.

In this way, we can approximate the cpj (xi) by fixing
a positive integer L1 with a tolerable residual error �. The
term

PmL
k=1 wke

p
k(xi)Rkj can be referred to as the partial

corruption representation of the input pattern, which tends
to make models more robust [46]. Furthermore, it can be
calculated based on matrix operation way, i.e., ’p(�p(xxx

p
i )) =

www 
 �p(xxx
p
i )R. Then, the boosting MMC training set Ep is

transformed into:

Cp = f(’p(�p(xixixi)); yi)j(�(xixixi); yi) 2 Epg: (10)

In this method, one describes an object with a set of new
dimensions fcpi j1 � j � mpLg, as shown in Table 4.

1. The performances usually do not increase when L > 10 shown
by numerous experiment results. Hence, we select the optimal value L
from f1; 2; : : : ; 10g.
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TABLE 4: Dataset Cp in the AF space

cp
1 cp

2 � � � cp
j � � � cp

mpL�1 cp
mpL

x1 cp
1(x1) cp

2(x1) � � � cp
j (x1) � � � cp

mpL�1(x1) cp
mpL(x1)

x2 cp
1(x2) cp

2(x2) � � � cp
j (x2) � � � cp

mpL�1(x2) cp
mpL(x2)

...
...

...
. . .

...
. . .

...
...

xn cp
1(xn) cp

2(xn) � � � cp
j (xn) � � � cp

mpL�1(xn) cp
mpL(xn)

After the above two steps, a new MMC training set C
is created from the original MMC training set D and the
mapping ’ as follows:

C = fC1; C2; � � � ; CP g: (11)

Based on C, any existing MMC learner L can be used to
induce a classification model f  [ L(C).

The complete procedure of AF is shown in Algorithm
1. Firstly, every modality Dp 2 D is fused by exploiting
relations between intra-modal features (steps 1-16). After
that, an MMC predictive function is induced by learning
from the transformed MMC training set C (steps 17-18).
Finally, the class for an unseen instance is predicted based
on the boosting features as well (steps 19-21).

Algorithm 1 The pseudo-code of AF

Input: fDpgPp=1: MMC training dataset with P modalities;
L: feature boosting rate;
L: MMC training algorithm;
xxx�: unseen instance.

Output: y�: predicted class for xxx�.
1: for p = 1 to P do
2: for i = 1 to n do
3: Calculate �p(xxx

p
i ) based on Eq. (4);

4: end for
5: Form Ep based on Dp according to Eq. (5);
6: for i = 1 to mpL do
7: for j = 1 to mpL do
8: Calculate r(epi ; e

p
j ) according to Eq. (7);

9: end for
10: end for
11: Form the relationship fusion matrix Rp with Eq. (6);
12: for i = 1 to n do
13: Calculate ’p(�p(xxx

p
i )) based on Eq. (8);

14: end for
15: Form Cp according to Eq. (10);
16: end for
17: Form the transformed MMC training set C according to

Eq. (11);
18: Induce MMC predictive function f based on C: f  [

L(C);
19: Generate boosting instance �(xxx�);
20: Generate fused instance ’(�(xxx�)) with �(xxx�) and Rp;
21: Return y� = f(’(�(xxx�))).

3.2 Remarks
1) It should be noted that the proposed AF approach

should be regarded as a meta-strategy to learn
from MMC examples, where any off-the-shelf MMC
training algorithm L can be utilized to instantiate

(a) Original space (b) Fused spaceL = 1 (c) Fused space L = 2

Fig. 4: The difference of associations between features from original
space and fused space on image feature space on Wiki

AF. That is, many existing excellent methods only
take the fused features by AF as their inputs, and
they still work without other any modification. Con-
sidering that the logistic regression algorithm (LR)
is a simple yet effective model and has shown to be
powerful in MMC tasks [47], [48]. Thus, we employ
it as the base machine learner of the traditional
MMC methods in the experimental settings of best,
early and late fusion strategies for validating the
advantages of the AF method. Subsection 4.3.4 will
also discuss other base machine learner.

2) Moreover, the feature boosting method with the
power of the original features and the relationship
matrix obtained using Pearson correlation coeffi-
cient only act as an attempt towards association-
based feature fusion method. This is not meant to
be the best possible practice among other feasi-
ble choices. Nevertheless, the experimental studies
validate the effectiveness of AF in improving the
performance of MMC.

3) It is important to note that AF is not to eliminate
associations between features but fuse features with
associations between them. Thus, the fused feature
space should have stronger associations than the
original space, which is depicted in Fig. 4.

4) Furthermore, we show several advantages of AF
space by plotting the relationships between features
on Iris dataset shown in Fig. 3(b). Compared to
Fig. 3(a) in the original space, Fig. 3(b) shows three
advantages: (1) The clustering structures are more
compact; (2) The margin between the clusters is
bigger and clearer. For example, the margin between
the red points and the green points or blue points
for a1 and a2; (3) In the diagonal axes, the uni-
variate distribution of the data for the variable is
more separable. These observations suggest that the
fused features with AF have superior representation
capacity.

5) There are two perspectives to understand why the
powers of features are used in the procedure of the
feature boosting. (1) Nonlinear: In AF space, the
nonlinear representation ability of original features
could be modeled by considering their powers. (2)
Association approximation: Compared with other
methods [4], [5], [20], [49], Pearson correlation co-
efficient is efficient in calculation but only can mea-
sure the linear relationship between two variables.
In this case, we need to solve an issue that how to
efficiently measure associations between any feature
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TABLE 5: Statistics of benchmark datasets

Datasets #Train #Test Image Text #Class
Wiki [51] 2,173 693 128 10 10

Wikiv2 [52] 2,173 693 1,024 100 10
PS [53] 3,500 1,500 1,024 100 20

TVGraz [54] 1,558 500 1,024 100 10
VOC2007 [55] 2,799 2,820 512 399 20

NUS-WIDE [58] 4,870 860 500 1,000 10

variable and other variables. Inspired by Taylor se-
ries form and linear regression, we can approximate
it with Eq. 9 by considering associations among
every feature and a set including all feature and
their powers. Subsection 4.3.2 will also discuss the
effect of other association measures on AF.

4 EXPERIMENTS

The proposed AF method is a general fusion framework and
the existing MMC methods can be embedded into it. Gener-
ally, the MMC methods can be grouped into two categories:
traditional methods and deep learning-based methods. To
systematically verify the generality and the effectiveness of
the AF, we respectively couple the AF method into the two
types of MMC methods by setting different MMC training
algorithms to the L in Algorithm 1 and conduct extensive
experimental comparison.

4.1 Experimental Study on Traditional MMC Methods
In the experiment, we verify the effectiveness of the AF
method by coupling it with the traditional MMC methods
from four aspects: generality, classification performance,
parameter sensitivity and execution time.

4.1.1 Datasets
Note that multi-modal data do not just refer to the raw
images, texts, audios, or videos (called narrow multi-modal
data). Sometimes it also means multiple descriptors extract-
ed from the raw data (called generalized multi-modal data)
[2], [50], such as HOG, SIFT, and SURF.

To thoroughly evaluate the performance of compared
algorithms, a total of six publicly-available benchmark nar-
row multi-modal datasets: Wiki [51], Wikiv2 [52], Pascal-
sentences [53], TVGraz [54], Pascal VOC2007 [55] and NUS-
WIDE-5:7K [56], and two benchmark generalized multi-
modal datasets: Multiple Features [57] and NUS-WIDE-
OBJECT [56] are employed. The statistics of six narrow
multi-modal datasets are shown in Table 5.

For the narrow multi-modal datasets, the training and
testing set split are provided by authors or community. Ac-
cordingly, we conduct experiments with each algorithm for
once. For the generalized multi-modal datasets, we conduct
experiments on each algorithm for ten times, and the mean
metric values across 10 training/testing trials are recorded
for comparative studies.

Wiki2 contains 2; 866 image-text pairs from 10 classes
collected from Wikipedia’s articles. Each image is repre-
sented by a 128-dim bag-of-words based on SIFT descrip-
tor (BoWSIFT) and each text is represented by the probabil-
ity distribution over 10 topics learned by a latent Dirichlet

2. http://www.svcl.ucsd.edu/projects/crossmodal/

allocation (LDA) 10-dim LDA features. Moreover, literature
[52] provides its other version (called Wikiv2) where each
image and each text are represented as a 1024-dim BoWSIFT
feature vector and 100-dim LDA feature vector, respectively.

PASCAL Sentences (PS)3 contains a total of 1000 images
collected from 20 categories of PASCAL 2008 [53]. For each
category, 50 images are randomly selected. Each image
is annotated with five sentences by Amazon Turkers. We
use the same feature representation as in [58]. After SIFT
features are extracted, each image is represented as 1024-
dim feature vector with the bag of visual words (BoVW)
model. The text is described with 10-dim LDA features.

TVGraz contains 2; 058 image-text pairs [54] from 10
visual object categories of the Caltech-256. We still use the
same data provided by [59], where each image is represent-
ed by a 1024-dim feature vector based on SIFT BoVW, and
the text is represented by a 100-dim LDA features.

Pascal VOC2007 (VOC2007)4 contains 9; 963 image-tag
pairs belonging to one or more of 20 classes. We choose
single-label pairs and remove some pairs with text features
with all zeros obtaining 2; 799 training and 2; 820 testing
samples. We use the features in [60], where 512-dim Gist
features are adopted for the images and 399-dim word
frequency features for text. For this dataset, we add a
constant value of 0:00001 to the original feature to solve
the denominator zero problem in the process of computing
the covariance matrices.

NUS-WIDE-5.7K (NUS-WIDE)5 is a subset of NUS-
WIDE dataset [56], and consists of 5; 730 paired objects.
Each pair includes an image represented by a 500-dim bag-
of-words based on SIFT descriptor and 1000-dim tag text.
Note that the text features that are represented with tag text
contain strong label information, as a result, it is easy to
train a classifier with approximately 100% accuracy. Thus,
a gaussian noise with the mean of 0 and the standard
deviation of 0:2 is added to the original text modality feature
space to slightly disturb it. The split of training and testing
follows the way in [58], where 85% of the data are for
training and the remaining 15% for testing.

Multiple Features (MFeat)6 consists of features of hand-
written numerals (‘0’–‘9’) extracted from a collection of
Dutch utility maps. 200 patterns per class (for a total of 2,000
patterns) have been digitized in binary images. These digits
are represented by four modalities. The description of these
modalities is given in Table 6. Considering that there exist
relationship among pix features, we combine pix features
with other three types of features respectively, obtaining
three multi-modal datasets: MFeat-FouP, MFeat-ZerP, and
MFeat-FacP.

NUS-WIDE-OBJECT7 consists of 30000 images from
Flickr that are classified into 31 classes. We take 4015 images
from 10 classes in the experiment. These images are rep-
resented by five modalities whose the description is given
in Table 7. We obtain ten multi-modal datasets: CM-CORR,

3. http://www.svcl.ucsd.edu/ josecp/files/ris cvpr12.zip
4. http://vision.cs.utexas.edu/sungju/pascal twkim.zip
5. https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-

WIDE.html.
6. http://archive.ics.uci.edu/ml/datasets/Multiple+Features
7. https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-

WIDE-OBJECT.rar
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TABLE 6: Description of multiple features dataset

Modality Data Source #Dimension
1 Fou Fourier coefficients 76
2 Zer Zernike moments 47
3 Fac Profile correlations 216
4 Pix Pixel averages in 2 x 3 windows 240

TABLE 7: Description of NUS-WIDE-OBJECT dataset

Modality Data Source #Dimension
1 CH Color histogram 64
2 CORR Color correlogram 144
3 EDH Edge direction histogram 75
4 WT Wavelet texture (WT) 128
5 CM Block-wise color moments (CM) 225

CM-EDH, CM-WT, CORR-EDH, CH-CM, CH-CORR, CH-
EDH, CH-WT, CORR-WT, and EDH-WT by combining arbi-
trary two modality features. The split of training and testing
follows the way where 70% of the data for training and the
remaining 30% for testing.

4.1.2 Performance Metrics

To evaluate the performance of MMC result, we employ
five widely-used metrics: accuracy (AC), precision (PE),
recall (RE), F1 score, and kappa (K). The larger values of
these five evaluation measures indicate a better classification
performance. They are defined as follows.8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

AC =
TP + TN

n

PE =
TP

TP + FP

RE =
TP

TP + FN

F1 =
2PE �RE
PE +RE

K =
po � pe
1� pe

(12)

where

� TP denotes the number of true positives;
� TN denotes the number of true negatives;
� FP denotes the number of false positives;
� FN denotes the number of false negatives;
� n = TP + TN + FN + FP ;
� po = AC is the empirical probability of agreement

on the label assigned to any sample (the observed
agreement ratio), and pe = (TP+FN)�(TP+FP )

n +
(FP+TN)�(FN+TN)

n is the expected agreement when
both annotators assign labels randomly.

4.1.3 Generality

In the experiment, we investigate the generality of AF on the
traditional MMC methods. Specifically, we couple AF with
four MMC methods that adopt four fusion paradigms: “best
modality”, “concatenation” (early), “uniform combination”
(late) and “model”, which are described in Section 2.2. For a
fair comparison, logistic regression (LR) is chosen as a base
classifier for “best modality”, “concatenation” and “uniform
combination”.

� “Best modality”: Apply LR for each modality indi-
vidually and then select the best modality. We name
it and its AF version by LRB and AFB .

� “Concatenation”: An early fusion approach by con-
catenating features of all modalities before LR. We
name it and its AF version with LRC and AFC .

� “Uniform combination”: A late fusion approach by
uniformly combining all modalities after LR. We
name it and its AF version with LRU and AFU , in
which we first learn a classification model for each
modality, and then uniformly combine all probabil-
ities output by these classification models for final
output.

� “Model”: A model-based fusion approach. In this
paper, we use a widely-used MKL approach [61] as
its representative. We name it and its AF version with
MKL and AFMKL.

The detailed experimental results are shown in Tables 8-
11 where the best performance between the original and AF
version is marked with boldface.

For LRB and its AF version AFB , as shown in Table 8,
AFB obtains better performance on 16, 9, 18, 18 and 16 of
19 datasets in terms of accuracy, precision, recall, F1 and
kappa, respectively. For LRC and its AF version AFC , as
shown in Table 9, AFC obtains better performance on 18, 16,
19, 19 and 19 datasets in terms of each evaluation metric,
respectively. For LRU and its AF version AFU , as shown in
Table 10, AFU obtains better performance on 16, 16, 18, 18
and 16 datasets, respectively. And for MKL and its AF ver-
sion AFMKL, as shown in Table 11, AFMKL obtains better
performance on 16, 13, 11, 10 and 15 datasets, respectively.
In summary, the AF version algorithms statistically surpass
the corresponding original ones.

Furthermore, we use the traditional Wilcoxon signed-
rank test to test whether the AF versions perform signif-
icantly better than the original algorithms. As shown in
Table 12, the corresponding AF versions obtain statistically
superior or at least comparable performance in terms of all
evaluation metrics for all algorithms, which indicates that
AF has better generality, and could provide classifiers with
more discriminative information than the original features.

4.1.4 Classification Performance
In this section, eight algorithms are compared to evaluate
the effectiveness of the AF. Tables 8-11 report the experi-
mental results of each algorithm on 19 datasets, respectively.
The best performance among the eight algorithms is shown
in the underline.

Based on the reported experimental results shown in
Tables 8-11, it is clear to observe that: (1) In summary, the
AF version methods almost achieve the best performance
on all datasets. (2) In the original feature space, the average
values of all metrics of MKL are higher 2:66%, 3:15%,
4:74%, 5:32% and 3:00% than LR. Surprisingly, AFC ob-
tains comparable results with AFMKL on average metric
values and the dataset number of obtaining the best perfor-
mance. Also, the average metric values of AFC are higher
1:97%, 1:25%, 0:54%, 60:26% and 2:29% than MKL with
the best performance among the corresponding original
methods. For precision, AFU with the best performance is

Authorized licensed use limited to: Peking University. Downloaded on March 03,2022 at 06:45:40 UTC from IEEE Xplore.  Restrictions apply. 



0162-8828 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3125995, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

TABLE 8: Classification performance comparison between LRB and AFB

Id Datasets Accuracy Precision Recall F1 Kappa Time (s)

LRB AFB LRB AFB LRB AFB LRB AFB LRB AFB LRB AFB

1 Wiki 0.6623 0.6797 0.6586 0.6240 0.6051 0.6227 0.5627 0.5916 0.6193 0.6389 0.0369 2.1957
2 Wikiv2 0.8081 0.8369 0.8373 0.8411 0.7685 0.8248 0.7841 0.8297 0.7831 0.8166 0.1676 3.1665
3 PS 0.4127 0.4320 0.4138 0.4220 0.4167 0.4361 0.3951 0.4183 0.3819 0.4022 0.7002 13.6686
4 TVGraz 0.7340 0.8320 0.8051 0.8545 0.7169 0.8244 0.7271 0.8313 0.7023 0.8124 0.1157 4.0322
5 VOC2007 0.8855 0.9106 0.8609 0.8582 0.7713 0.8418 0.8071 0.8296 0.8738 0.9020 2.1044 37.0928
6 NUS-WIDE 0.8756 0.8593 0.8751 0.8599 0.8769 0.8603 0.8749 0.8588 0.8617 0.8436 6.4428 23.0966
7 MFeat-FouP 0.7925 0.9525 0.7849 0.9540 0.7900 0.9531 0.7845 0.9530 0.7691 0.9471 0.1846 8.8514
8 MFeat-ZerP 0.8150 0.9525 0.8037 0.9540 0.8048 0.9531 0.8031 0.9530 0.7940 0.9471 1.3404 9.0208
9 MFeat-FacP 0.7300 0.9525 0.6999 0.9540 0.7600 0.9531 0.6937 0.9530 0.7015 0.9471 0.2274 20.3217
10 CM-CORR 0.5253 0.5436 0.4576 0.4301 0.3767 0.3947 0.3834 0.3966 0.4211 0.4449 3.7879 36.6341
11 CM-EDH 0.4938 0.5220 0.3963 0.4129 0.3456 0.3711 0.3569 0.3800 0.3850 0.4201 5.4385 99.5888
12 CM-WT 0.5120 0.5220 0.4399 0.4129 0.3354 0.3711 0.3396 0.3800 0.3981 0.4201 1.7952 57.4594
13 CORR-EDH 0.5253 0.5436 0.4576 0.4301 0.3767 0.3947 0.3834 0.3966 0.4211 0.4449 5.0685 29.4672
14 CH-CM 0.4938 0.5220 0.3963 0.4129 0.3456 0.3711 0.3569 0.3800 0.3850 0.4201 5.3816 114.2695
15 CH-CORR 0.5253 0.5436 0.4717 0.4932 0.3767 0.3947 0.3834 0.3966 0.4211 0.4449 2.2380 21.9125
16 CH-EDH 0.4531 0.4689 0.4576 0.4261 0.2843 0.2949 0.2842 0.2956 0.3248 0.3480 0.8477 17.4394
17 CH-WT 0.5120 0.4954 0.4399 0.4287 0.3354 0.3489 0.3396 0.3619 0.3981 0.3824 3.2952 374.8450
18 CORR-WT 0.5253 0.5436 0.4576 0.4301 0.3767 0.3947 0.3834 0.3966 0.4211 0.4449 3.4688 31.3781
19 EDH-WT 0.5120 0.4954 0.4399 0.4287 0.3354 0.3489 0.3396 0.3619 0.3981 0.3824 1.3325 182.9380

Average value 0.6207 0.6636 0.5870 0.6120 0.5262 0.5765 0.5254 0.5771 0.5505 0.6005
AFB�LRB " 4:29% " 2:50% " 5:03% " 5:17% " 5:00%

TABLE 9: Classification performance comparison between LRC and AFC

Id Datasets Accuracy Precision Recall F1 Kappa Time (s)

LRC AFC LRC AFC LRC AFC LRC AFC LRC AFC LRC AFC

1 Wiki 0.6739 0.6941 0.6420 0.6380 0.6186 0.6398 0.5806 0.6213 0.6324 0.6552 0.2207 4.2227
2 Wikiv2 0.8066 0.8384 0.8360 0.8418 0.7652 0.8258 0.7804 0.8309 0.7815 0.8182 0.6194 3.9026
3 PS 0.4280 0.4973 0.4334 0.4854 0.4316 0.5022 0.4122 0.4853 0.3980 0.4709 1.7114 35.8092
4 TVGraz 0.7640 0.8740 0.8249 0.8819 0.7491 0.8678 0.7584 0.8713 0.7361 0.8595 0.4239 49.4288
5 VOC2007 0.8855 0.9152 0.8609 0.8628 0.7714 0.8325 0.8072 0.8456 0.8738 0.9071 4.5239 128.1687
6 NUS-WIDE 0.8767 0.8791 0.8762 0.8793 0.8783 0.8809 0.8761 0.8787 0.8630 0.8656 8.0245 36.8395
7 MFeat-FouP 0.8325 0.9650 0.8310 0.9672 0.8330 0.9659 0.8290 0.9661 0.8136 0.9610 0.3511 10.1808
8 MFeat-ZerP 0.8400 0.9325 0.8330 0.9332 0.8318 0.9292 0.8313 0.9306 0.8218 0.9248 5.9072 12.9887
9 MFeat-FacP 0.7525 0.9650 0.7159 0.9639 0.7804 0.9645 0.7191 0.9640 0.7262 0.9610 0.7610 37.9027
10 CM-CORR 0.5461 0.5627 0.4582 0.4888 0.4208 0.4374 0.4315 0.4537 0.4526 0.4718 8.8344 46.0439
11 CM-EDH 0.5544 0.5934 0.4590 0.4936 0.4013 0.4485 0.4168 0.4612 0.4599 0.5087 8.3317 111.9200
12 CM-WT 0.5743 0.6025 0.4702 0.5125 0.4232 0.4595 0.4357 0.4762 0.4841 0.5191 8.4235 415.8234
13 CORR-EDH 0.5884 0.6041 0.5208 0.5159 0.4430 0.4513 0.4589 0.4639 0.5005 0.5199 6.6941 39.8993
14 CH-CM 0.5012 0.5278 0.4188 0.4422 0.3654 0.3842 0.3791 0.3925 0.3949 0.4255 7.5219 23.1411
15 CH-CORR 0.5353 0.5577 0.4524 0.4474 0.3885 0.4190 0.3885 0.4186 0.4366 0.4653 3.2752 121.7725
16 CH-EDH 0.5519 0.5643 0.4468 0.4917 0.3758 0.3986 0.3768 0.4089 0.4534 0.4700 3.6412 15.8856
17 CH-WT 0.5726 0.5826 0.4836 0.4943 0.4123 0.4417 0.4197 0.4497 0.4787 0.4932 5.0754 82.0507
18 CORR-WT 0.6050 0.6124 0.5352 0.5502 0.4621 0.4831 0.4788 0.4964 0.5192 0.5310 7.1450 378.6737
19 EDH-WT 0.5261 0.5261 0.4708 0.5157 0.3622 0.3853 0.3770 0.4027 0.4190 0.4213 2.8633 26.6976

Average value 0.6534 0.6997 0.6089 0.6529 0.5639 0.6167 0.5662 0.6220 0.5918 0.6447
AFC�LRC " 4:63% " 4:40% " 5:28% " 5:58% " 5:29%

higher 3:35% than MKL. Note that MKL is usually time-
consuming, however, LRC enhanced with AF, has not only
lower time complexity like LR but also higher performance
like MKL. (3) It is remarkable that AFB only using one
modality data performs better performance than LRC and
LRU using two modality data in some cases. Especially,
compared to the LRU and LRC algorithms, the average
value of accuracy of AFB can be increased by 1:02% and
3:32%, respectively. This further indicates that the features
induced by AF indeed benefit the existing methods. Also,
from the average rank, it is noticeable that AFC surpasses
others. This implies that intra-modality fusion is very vital
for improving model performance. Similar results can be
observed for recall, F1 and kappa evaluation measures.

To further assess the statistical signification of the differ-
ences in classification performance of the eight algorithms,
we employ the Friedman test [62], a widely-accepted as
the favorable statistical test for comparisons of multiple

algorithms over many datasets. Specially, it follows a Fisher
distribution with k � 1 numerator degrees of freedom and
(k�1)(N �1) denominator degree of freedom, it is defined
as:

FF =
(N � 1)�2

F

N(k � 1)� �2
F

;where

�2
F =

(12N)

k(k + 1)
(
kX
i=1

R2
i �

k(k + 1)

4
);

where k and N denote the number of the compared algo-
rithms and datasets, respectively. Ri is the average rank of
algorithm i among all the datasets. The smaller the average
rank value is, the better the corresponding algorithm is. Its
null hypothesis (performance of all algorithms is equivalent)
is rejected if the returned p-value is less than the specified
significance level.
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TABLE 10: Classification performance comparison between LRU and AFU

Id Datasets Accuracy Precision Recall F1 Kappa Time (s)

LRU AFU LRU AFU LRU AFU LRU AFU LRU AFU LRU AFU

1 Wiki 0.6551 0.6696 0.5533 0.5946 0.5903 0.6070 0.5485 0.5728 0.6104 0.6270 0.1496 6.1516
2 Wikiv2 0.7359 0.8225 0.8278 0.8370 0.6782 0.7973 0.6968 0.8102 0.6995 0.7999 0.4827 29.7430
3 PS 0.4187 0.4747 0.4214 0.4603 0.4232 0.4797 0.4002 0.4575 0.3883 0.4471 1.2277 28.2302
4 TVGraz 0.6940 0.8360 0.8044 0.8612 0.6700 0.8263 0.6785 0.8328 0.6573 0.8169 0.3431 44.5472
5 VOC2007 0.8365 0.8961 0.8568 0.8689 0.6768 0.7927 0.7352 0.8249 0.8183 0.8856 3.4847 104.2243
6 NUS-WIDE 0.8756 0.8709 0.8750 0.8709 0.8769 0.8723 0.8748 0.8706 0.8617 0.8565 7.3952 131.1999
7 MFeat-FouP 0.8150 0.9325 0.8111 0.9370 0.8144 0.9332 0.8090 0.9345 0.7942 0.9248 0.2473 7.3766
8 MFeat-ZerP 0.8250 0.9450 0.8154 0.9473 0.8162 0.9431 0.8143 0.9446 0.8051 0.9387 1.4501 8.3840
9 MFeat-FacP 0.6600 0.9400 0.5600 0.9399 0.6975 0.9415 0.6014 0.9397 0.6249 0.9332 1.1709 22.8050
10 CM-CORR 0.5593 0.5859 0.4631 0.5186 0.3847 0.4153 0.3954 0.4276 0.4604 0.4935 11.7955 474.1096
11 CM-EDH 0.5328 0.5784 0.4165 0.5215 0.3292 0.3830 0.3348 0.3906 0.4249 0.4829 8.6080 331.9047
12 CM-WT 0.5734 0.5826 0.4724 0.5500 0.3841 0.4104 0.3960 0.4193 0.4757 0.4881 10.0342 377.8699
13 CORR-EDH 0.5668 0.5776 0.6487 0.6852 0.3586 0.3797 0.3653 0.3887 0.4654 0.4814 5.5841 146.1992
14 CH-CM 0.5129 0.5228 0.4000 0.5162 0.3312 0.3458 0.3369 0.3548 0.4014 0.4147 5.9601 60.9311
15 CH-CORR 0.5270 0.5436 0.5547 0.4859 0.3519 0.3741 0.3579 0.3820 0.4183 0.4409 6.6722 472.0880
16 CH-EDH 0.5237 0.5402 0.4303 0.5175 0.3085 0.3324 0.3019 0.3269 0.4095 0.4331 1.6626 30.0926
17 CH-WT 0.5660 0.5593 0.4846 0.5823 0.3611 0.3728 0.3645 0.3842 0.4635 0.4569 3.8318 37.9865
18 CORR-WT 0.5834 0.5934 0.5954 0.5543 0.4012 0.4235 0.4218 0.4412 0.4872 0.5010 7.6984 274.0384
19 EDH-WT 0.5170 0.5120 0.4222 0.5562 0.3243 0.3332 0.3239 0.3367 0.4029 0.3990 3.0299 35.7405

Average value 0.6304 0.6833 0.6007 0.6739 0.5146 0.5770 0.5135 0.5810 0.5615 0.6222
AFU�LRU " 5:29% " 7:32% " 6:24% " 6:75% " 6:07%

TABLE 11: Classification performance comparison between MKL and AFMKL

Id Datasets Accuracy Precision Recall F1 Kappa Time (s)

MKL AFMKL MKL AFMKL MKL AFMKL MKL AFMKL MKL AFMKL MKL AFMKL

1 Wiki 0.6869 0.7114 0.6546 0.6910 0.6455 0.6830 0.6476 0.6853 0.6482 0.6759 457.1420 560.1794
2 Wikiv2 0.8398 0.8499 0.8401 0.8433 0.8274 0.8434 0.8323 0.8427 0.8198 0.8313 495.3548 994.1217
3 PS 0.5607 0.6200 0.5586 0.6207 0.5658 0.6223 0.5562 0.6178 0.5376 0.5999 5650.9097 9579.2857
4 TVGraz 0.8960 0.9160 0.9037 0.9154 0.8924 0.9111 0.8942 0.9117 0.8840 0.9064 109.5240 178.4308
5 VOC2007 0.9174 0.9220 0.8437 0.8447 0.8495 0.8537 0.8458 0.8482 0.9097 0.9148 476.7077 387.2784
6 NUS-WIDE 0.8663 0.8849 0.8653 0.8859 0.8678 0.8865 0.8659 0.8853 0.8513 0.8720 2335.0329 12069.3905
7 MFeat-FouP 0.9375 0.9750 0.9397 0.9765 0.9373 0.9745 0.9380 0.9752 0.9304 0.9722 79.7339 30.3208
8 MFeat-ZerP 0.9400 0.9650 0.9445 0.9658 0.9374 0.9636 0.9400 0.9641 0.9331 0.9610 86.9964 29.6886
9 MFeat-FacP 0.9600 0.9700 0.9605 0.9716 0.9591 0.9688 0.9592 0.9698 0.9555 0.9666 567.2746 45.4465
10 CM-CORR 0.5195 0.5336 0.4409 0.4402 0.3964 0.3900 0.4078 0.4030 0.4200 0.4354 536.7302 1516.9084
11 CM-EDH 0.5344 0.5643 0.4492 0.5150 0.4022 0.4145 0.4149 0.4277 0.4372 0.4706 415.8542 6919.9883
12 CM-WT 0.5494 0.5560 0.5001 0.4877 0.4203 0.4187 0.4445 0.4310 0.4551 0.4605 561.4801 6015.7117
13 CORR-EDH 0.5485 0.5668 0.4793 0.4805 0.4386 0.4290 0.4489 0.4363 0.4554 0.4771 406.6301 2884.1532
14 CH-CM 0.5046 0.5004 0.4537 0.4111 0.3895 0.3485 0.4096 0.3580 0.4009 0.3906 537.1267 9422.8126
15 CH-CORR 0.5154 0.5162 0.4519 0.4368 0.4071 0.3768 0.4218 0.3867 0.4170 0.4126 602.9201 1228.7603
16 CH-EDH 0.5336 0.5544 0.4683 0.4725 0.4227 0.4263 0.4375 0.4357 0.4382 0.4626 778.5727 3224.0584
17 CH-WT 0.5602 0.5427 0.4954 0.4859 0.4428 0.4089 0.4597 0.4257 0.4702 0.4451 1062.6363 2387.6881
18 CORR-WT 0.5618 0.5519 0.5053 0.4656 0.4483 0.4181 0.4657 0.4296 0.4718 0.4587 989.9633 1925.5641
19 EDH-WT 0.4871 0.5021 0.4135 0.4405 0.3651 0.3587 0.3781 0.3694 0.3785 0.3949 1103.1696 3540.7621

Average value 0.6800 0.6949 0.6404 0.6500 0.6113 0.6156 0.6194 0.6212 0.6218 0.6373
AFMKL�MKL " 1:49% " 0:96% " 0:43% " 0:18% " 1:55%
AFC�MKL " 1:97% " 1:25% " 0:54% " 0:26% " 2:29%

(a) Accuracy (b) Precision (c) Recall (d) F1 (e) Kappa

Fig. 5: Comparison between A and B (control algorithms, A and B denote the AF version and original algorithms with the best performance,
and they are remarked with red star and blue star, respectively) against other comparing algorithms with the Nemenyi test. Algorithms are not
connected with A (red line) and B (blue line) in the CD diagram are considered to have significantly different performance from the control
algorithm (significance level � = 0:05).
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TABLE 12: Wilcoxon signed-ranks test for LRB , LRC , LRU and MKL a-
gainst their AF versions in terms of each evaluation metric (significance
level � = 0:05; p-values shown in the brackets)

Methods Accuracy Precision Recall F1 Kappa
AFB , LRB win [8.2e-4] tie [8.7e-1] win [2.5e-4]win [3.4e-4]win [3.4e-4]
AFC , LRC win [2.0e-4]win [8.4e-4]win [1.3e-4]win [1.3e-4]win [1.3e-4]
AFU , LRU win [3.4e-4]win [1.7e-3]win [1.6e-4]win [1.6e-4]win [3.4e-4]

AFMKL, MKLwin [1.7e-3] tie [1.5e-1] tie [4.4e-1] tie [6.6e-1] win [5.5e-3]

TABLE 13: Summary of the Friedman statistics FF

Evaluation metric FF Critical value (� = 0:05)
Accuracy 12.7303

2.0830
Precision 7.1524

Recall 32.1730
F1 33.7278

Kappa 12.7009

As shown in Table 13, at signification level � = 0:05, the
null hypothesis is clearly rejected in terms of each evaluation
measures. Hence, it is necessary to further study relative
performance among the comparing algorithms using a Ne-
menyi post hoc test that compares classifiers in a pairwise
manner. In Nemenyi test, the performance of two algorithms
is considered significantly different if the distance of the
average ranks exceeds the following critical distance

CD = q�

s
k(k + 1)

6N
; (13)

where q�=0:05 = 3:031 when k = 8.
The CD diagrams are often used to illustrate the rank

relation among the comparing algorithms. In CD diagrams,
the average rank of each algorithm is marked along the
axis (the smaller the better). As shown in Fig. 5, AFC ranks
first on all metrics but precision (ranks second on precision).
Also, it is surprising that AFC is statistically better than four
original methods: LRB , LRC , LRU and MKL on accuracy
and kappa.

4.1.5 Parameter Sensitivity
AF introduces one hyper-parameter L. In this section, we
study the impact of L on the performance of the AF algo-
rithm by plotting the changing curves of the performance
of AF with increasing value of L in terms of five metrics.
Specifically, the parameter L successively takes values of
1, 2, � � � , 10. As shown in Table 14, in most cases: (1) The
three versions of the AF obtain a satisfactory performance
when the value of L is smaller, which suggests that com-
bining lower power values of features (i.e. L takes smaller
values) is enough to improve the discriminative ability of
data, achieving a relatively satisfactory classification perfor-
mance. (2) The performance of AF tends to become stable as
the value of L increases.

4.1.6 Execution Time
The execution time of all the comparing methods is record-
ed in the last two columns in Tables 8-11. Based on the
results, there are two observations: (1) In most cases, the
AF-based methods tend to consume more time than the
original methods. The reason is that AF-based methods
often achieve better performance when L = 2 or 3 than
the original methods. In this case, the number of features
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Fig. 6: Performance of algorithm with different fusion strategies

in the AF space is double or triple as much as that of the
original features. On the other hand, AF sometimes may
accelerate model convergence because of the advantage that
the fused space obtained by it has the stronger expressing
ability which has been discussed in Section 3.2. This is
observed by a fact that AFMKL costs less time than MKL
on some datasets. For example, AFMKL takes 89.4293(s)
and 521.8281(s) less time than MKL method on VOC2007
and MFeat-FacP, respectively. (2) Compared with MKL that
obtains the best the average values of accuracy, recall, F1 and
Kappa for nonAF methods, AFC that obtains the best values
on these metrics on eight comparing methods, consumes far
less execution time. Hence, in practice the proposed AFC
has obvious advantages in both efficiency and effectiveness.

Some dimensionality reduction techniques like rough set
[63], PCA, can be used to accelerate AF-based methods.

4.1.7 The Extension Versions of AF

In this subsection, we explore the extension versions of AF
using different fusion strategies: O(IT), C(T)O(I), C(I)O(T),
C(IT) [it considers the associations between intra-modal and
inter-modal features] and C(I)C(T). O(IT) denotes a fused
space obtained by concatenating the original image and text
features. C(T)O(I) denotes a fused space obtained by con-
catenating association-based fused text features and original
image features. C(I)O(T) denotes a fused space obtained by
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TABLE 14: Performance of algorithm changes in terms of each evaluation metric as the parameter L increases from 1 to 10 on six benchmark
datasets

Methods Accuracy Precision Recall F1 Kappa

AFC

1 2 3 4 5 6 7 8 9 1 0
0 . 4 5

0 . 5 0

0 . 5 5

0 . 6 0

0 . 6 5

0 . 7 0

0 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

0 . 9 5
A

c
c

u
r

a
c

y

L

 W i k i  W i k i v 2
 P S     T V G r a z
 V O C 2 0 0 7  N U S - W I D E

1 2 3 4 5 6 7 8 9 1 0
0 . 4 5

0 . 5 0

0 . 5 5

0 . 6 0

0 . 6 5

0 . 7 0

0 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

P
r

e
c

is
io

n

L

 W i k i  W i k i v 2
 P S     T V G r a z
 V O C 2 0 0 7  N U S - W I D E

1 2 3 4 5 6 7 8 9 1 0
0 . 4 5

0 . 5 0

0 . 5 5

0 . 6 0

0 . 6 5

0 . 7 0

0 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

R
e

c
a

ll

L

 W i k i  W i k i v 2
 P S     T V G r a z
 V O C 2 0 0 7  N U S - W I D E

1 2 3 4 5 6 7 8 9 1 0
0 . 4 0

0 . 4 5

0 . 5 0

0 . 5 5

0 . 6 0

0 . 6 5

0 . 7 0

0 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

F
1

L

 W i k i  W i k i v 2
 P S     T V G r a z
 V O C 2 0 0 7  N U S - W I D E

2 4 6 8 1 0
0 . 4 0
0 . 4 5
0 . 5 0
0 . 5 5
0 . 6 0
0 . 6 5
0 . 7 0
0 . 7 5
0 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5

K
a

p
p

a

L

 W i k i  W i k i v 2
 P S     T V G r a z
 V O C 2 0 0 7  N U S - W I D E

AFU

1 2 3 4 5 6 7 8 9 1 0
0 . 4 0

0 . 4 5

0 . 5 0

0 . 5 5

0 . 6 0

0 . 6 5

0 . 7 0

0 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

A
c

c
u

r
a

c
y

L

 W i k i  W i k i v 2
 P S     T V G r a z
 V O C 2 0 0 7  N U S - W I D E

1 2 3 4 5 6 7 8 9 1 0
0 . 4 0

0 . 4 5

0 . 5 0

0 . 5 5

0 . 6 0

0 . 6 5

0 . 7 0

0 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

P
r

e
c

is
io

n

L

 W i k i  W i k i v 2
 P S     T V G r a z
 V O C 2 0 0 7  N U S - W I D E

1 2 3 4 5 6 7 8 9 1 0
0 . 4 5

0 . 5 0

0 . 5 5

0 . 6 0

0 . 6 5

0 . 7 0

0 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

R
e

c
a

ll

L

 W i k i  W i k i v 2
 P S     T V G r a z
 V O C 2 0 0 7  N U S - W I D E

1 2 3 4 5 6 7 8 9 1 0
0 . 4 0

0 . 4 5

0 . 5 0

0 . 5 5

0 . 6 0

0 . 6 5

0 . 7 0

0 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

F
1

L

 W i k i  W i k i v 2
 P S     T V G r a z
 V O C 2 0 0 7  N U S - W I D E

1 2 3 4 5 6 7 8 9 1 0
0 . 4 0

0 . 4 5

0 . 5 0

0 . 5 5

0 . 6 0

0 . 6 5

0 . 7 0

0 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

K
a

p
p

a

L

 W i k i  W i k i v 2
 P S     T V G r a z
 V O C 2 0 0 7  N U S - W I D E

AFMKL

1 2 3 4 5 6 7 8 9 1 0
0 . 5 5

0 . 6 0

0 . 6 5

0 . 7 0

0 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

0 . 9 5

A
c

c
u

r
a

c
y

L

 W i k i  W i k i v 2
 P S     T V G r a z
 V O C 2 0 0 7  N U S - W I D E

1 2 3 4 5 6 7 8 9 1 0
0 . 5 5

0 . 6 0

0 . 6 5

0 . 7 0

0 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

0 . 9 5

P
r

e
c

is
io

n

L

 W i k i  W i k i v 2
 P S     T V G r a z
 V O C 2 0 0 7  N U S - W I D E

1 2 3 4 5 6 7 8 9 1 0
0 . 5 5

0 . 6 0

0 . 6 5

0 . 7 0

0 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

0 . 9 5

R
e

c
a

ll

L

 W i k i  W i k i v 2
 P S     T V G r a z
 V O C 2 0 0 7  N U S - W I D E

1 2 3 4 5 6 7 8 9 1 0
0 . 5 5

0 . 6 0

0 . 6 5

0 . 7 0

0 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

0 . 9 5

F
1

L

 W i k i  W i k i v 2
 P S     T V G r a z
 V O C 2 0 0 7  N U S - W I D E

1 2 3 4 5 6 7 8 9 1 0
0 . 5 0

0 . 5 5

0 . 6 0

0 . 6 5

0 . 7 0

0 . 7 5

0 . 8 0

0 . 8 5

0 . 9 0

0 . 9 5

K
a

p
p

a

L

 W i k i  W i k i v 2
 P S     T V G r a z
 V O C 2 0 0 7  N U S - W I D E

concatenating association-based fused image features and o-
riginal text features. C(IT) denotes a fused space obtained by
fusing O(IT) features with an association-based fusion way.
C(I)C(T) denotes a fused space obtained by concatenating
association-based fused the different modal features.

Based on the reported experimental results shown in Fig.
6, it is clear to observe that: (1) the model that is trained on
the association-based fusion features, achieves statistically
superior or at least comparable performance than O(IT)
when L takes 1. Note that the dimension of the fusion space
is the same as that of the original space when L takes 1.
That is, AF can obtain better performance, but take similar
time. Thus, AF has very big advantages in both efficiency
and effectiveness when L takes 1. On the other hand, AF
will take more time when L > 1, but could achieve better
performance. Thus, in practice, users can choose a proper
value of L according to their requirements for efficiency and
effectiveness; (2) the model that is trained on C(IT), could
achieve the best performance in some cases, which suggests
that inter-modal fusion also can benefit from the association-
based fusion strategy.

4.2 Experimental Study on Deep Learning-based MMC
Methods
In the experiment, we first verify the advantages of AF
against submodels in fusing intra-modal features in the
deep learning-based MMC methods (DMMC) by an ablation
study, and then compare it with several the state-of-the-art
deep learning-based MMC methods.

4.2.1 Comparison with Submodels
As mentioned in the third issue in Section 1, the deep
learning-based MMC methods adopt some submodels as
the intra-modal fusion module. In the experiment, we dis-
cuss the advantages of AF over submodels by an ablation
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Fig. 7: A DMMC architecture. FC:n denotes a fully-connected layer with
n neurons, where n 2 f64; 128g.

study on a DMMC architecture, which is adopted by most
existing deep learning-based MMC methods. For reducing
the interference of other factors as much as possible, we
adopt the DMMC architecture illustrated in Fig. 7. It in-
cludes the intra-modal fusion module that is shown with red
dotted box and the inter-modal fusion module that is shown
with gray dotted box. The inter-modal fusion module is
implemented by a deep fusion module (DFM) shown in
gray dotted box in Fig. 7. In DFM, we transfer the ouput
vi of each submodel to ui by a FC, then fuse all uis by
a fusion operator F 2 fConcat;Addg (Concat denotes to
concatenate all ui into a vector, Add is the element-wise
addition), pass the fused vector through a two-layer neural
network, finally transfer the output of the neural network to
a probability vector by a FC and a softmax function.

Transferring vi to ui is to make sure that uis are of
the same dimension such that the fusion operator Add can
work.

The intra-modal fusion module adopts different the sub-
model S including fully-connected layer (FC), MLP, self-
attention (Att) and AF, i.e., S 2 fFC;MLP;Att;AFg.

� AF: it implements the intra-modal fusion with Eq. 8
where L takes values from f1; 2; � � � ; 10g. Let mp be
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TABLE 15: Ablation study on a DMMC architecture

Datasets S F Accuracy Precision Recall F1 Kappa L F Accuracy Precision Recall F1 Kappa L

Wiki

AF

Add

0.7345 0.7117 0.6982 0.7030 0.7012 9

Concat

0.7316 0.7062 0.7025 0.7015 0.6986 9
FC 0.7085 0.6702 0.6715 0.6647 0.6727 10 0.7128 0.6829 0.6752 0.6738 0.6771 9

MLP1 0.7215 0.6915 0.6891 0.6890 0.6870 - 0.7143 0.7276 0.6716 0.6722 0.6781 -
MLP2 0.7085 0.6734 0.6714 0.6667 0.6727 5 0.7100 0.6796 0.6663 0.6588 0.6738 6
MLP3 0.7215 0.6926 0.6889 0.6873 0.6871 6 0.7229 0.7131 0.6717 0.6614 0.6880 4

Att 0.7244 0.7062 0.6903 0.6922 0.6903 - 0.7244 0.6954 0.6891 0.6865 0.6902 -

Wikiv2

AF

Add

0.8629 0.8518 0.8571 0.8531 0.8460 5

Concat

0.8644 0.8581 0.8585 0.8575 0.8475 4
FC 0.8470 0.8357 0.8459 0.8394 0.8283 10 0.8514 0.8451 0.8545 0.8481 0.8332 9

MLP1 0.8528 0.8394 0.8493 0.8425 0.8348 - 0.8586 0.8548 0.8553 0.8532 0.8412 -
MLP2 0.8456 0.8398 0.8420 0.8403 0.8264 7 0.8557 0.8555 0.8558 0.8529 0.8380 10
MLP3 0.8485 0.8382 0.8438 0.8399 0.8299 10 0.8514 0.8439 0.8421 0.8418 0.8329 3

Att 0.8543 0.8462 0.8540 0.8487 0.8364 - 0.8571 0.8564 0.8546 0.8549 0.8394 -

TVGraz

AF

Add

0.9300 0.9282 0.9261 0.9266 0.9220 1

Concat

0.9300 0.9276 0.9285 0.9271 0.9220 10
FC 0.9220 0.9192 0.9205 0.9194 0.9131 8 0.9180 0.9168 0.9132 0.9144 0.9086 8

MLP1 0.9260 0.9271 0.9229 0.9245 0.9175 - 0.9200 0.9195 0.9146 0.9163 0.9108 -
MLP2 0.9220 0.9203 0.9206 0.9200 0.9131 9 0.9160 0.9191 0.9159 0.9163 0.9064 7
MLP3 0.9160 0.9147 0.9146 0.9143 0.9064 8 0.9200 0.9145 0.9121 0.9127 0.9086 6

Att 0.9220 0.9218 0.9188 0.9198 0.9131 - 0.9260 0.9256 0.9225 0.9226 0.9175 -

the dimension of the input features of the pth modal-
ity, the dimension of the fused vector vp obtained by
AF is Lmp.

� FC: it is the baseline of AF. To fairly compare, AF and
FC have the same number of the fused features after
intra-modal fusion, i.e., a fully-connected layer with
Lmp neurons followed by batch normalization (BN)
and Relu activation function.

� MLP: we provide three versions for MLP and they
are a MLP with i FC layers, where i 2 f2; 3g. In
MLP1, each FC includes n hidden neurons, where
n 2 f64; 128g. In MLP2, the first FC includes Lmp

hidden neurons and others include n ones. In MLP3,
the final FC includes Lmp hidden neurons and others
include n ones.

� Att: it uses a multi-head self-attention to fuse each
modality where the number h of attention head takes
values from f1; 2; 4g, and the size of each attention
head for query, key and value is set to n

h , where n 2
f64; 128g.

For relieving the over-fitting issue, each fully-connected
layer is followed by batch normalization (BN) and dropout
is set to 0.2.

Table 15 shows the classification performance of the
DMMCs adopting the different submodels for the intra-
modal fusion on Wiki, Wikiv2 and Tvgraz. We can observe
that the DMMC adopting AF achieves superior performance
than the counterparts. The reason may be that the deep
model easily yields an over-fitting problem because of less
data. Among all submodels, AF does not introduce pa-
rameters. However, the others introduce extra parameters
to learn. Correspondingly, similar observations have also
been reported in related literature [32]. These results further
validate AF advantage on smaller-scale data sets.

4.2.2 Comparison with State-of-the-Art Methods
In the experiment, we couple the AF into a deep learning-
base MMC method: Self-MM [64] and the coupled method is
calledAFSelf�MM . TheAFSelf�MM is easily implemented.
Specifically, we only feed the enhanced features by AF into
Self-MM and other steps are kept same with Self-MM whose
code is available at https://github.com/thuiar/Self-MM.

TABLE 16: Dataset statistics in MOSI, MOSEI, and SIMS

Datasets # Train # Valid # Test # All
MOSI 1284 229 686 2199

MOSIE 16326 1871 4659 22856
SIMS 1368 456 457 2281

We compare the AFSelf�MM with nine state-of-the-art
deep learning-based MMC methods: TFN [65], LMF [66],
MFN [67], RAVEN [68], MFM [69], MulT [35], MISA [70],
MAG [71], and Self-MM [64] on three recently proposed
multi-modal datasets: MOSI [72], MOSEI [73] and SIMS [74].
Each dataset consists of three modalities: text, visual and
audio. Many recently proposed methods (e.g. [35], [69], [70],
[71], and [64]) use the three datasets as benchmark datasets
for evaluating their effectiveness.

Datasets: In the following, we give a brief introduction to
the used datasets whose basic statistics are shown in Table
16. More details refer to [64].

MOSI proposed in 2016, is one of the most popular
benchmark datasets for MMC. It consists of 2,199 opinion
video clips from 93 videos. Each video is assigned with
a specified sentiment score in the range [-3, 3] from high
negative to high positive.

MOSEI proposed in 2018, is an improvement over
MOSI. It contains higher number of utterances (23,453) from
5,000 videos, greater variety in speakers (1,000), and topics
(250) than MOSI.

SIMS proposed in 2020, is a distinctive MMC benchmark
with fine-grained annotations of modality. It consists of
2,281 video clips and each video is labeled with a specified
sentiment in the range [-1, 1].

Performance Metrics: We report mean absolute error
(MAE), pearson correlation (Corr), binary classification
accuracy (Acc-2) and F1 measure.

Let y = fyigni=1 and ŷ = fŷigni=1, where yi and ŷi
denote the true score and predicted score of the ith sample,
respectively. MAE and Corr are computed by

MAE =
1

n

nX
i=1

j ŷi � yi j

Corr = �(ŷ; y)

where � is defined in Eq. 7.
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TABLE 17: Results on MOSI and MOSEI. (B) means the language features are based on BERT, 1 is from [70], 2 is from [64], 3 is from
https://github.com/thuiar/MMSA/blob/master/results/result-stat.md. In Acc-2 and F1-Score, the left of the / is calculated as negative/non-
negative and the right is calculated as negative/positive.

Methods Year/
Publication

MOSI MOSEI SIMS Aligned?
MAE (#) Corr (") Acc-2(") F1 (") MAE (#) Corr (") Acc-2(") F1 (") MAE (#) Corr (") Acc-2(") F1 (")

TFN(B)1 [65] 2017/EMNLP 0.901 0.698 -/80.8 -/80.7 0.593 0.700 -/82.5 -/82.1 0.428 0.605 79.86 80.15 No
LMF(B)1 [66] 2018/ACL 0.917 0.695 -/82.5 -/82.4 0.623 0.677 -/82.0 -/82.1 0.431 0.600 79.37 78.65 No

MFN1 [67] 2018/AAAI 0.965 0.632 77.4/- 77.3/- - - 76.0/- 76.0/- 0.435 0.582 77.9 65.73 Yes
RAVEN1 [68] 2019/AAAI 0.915 0.691 78.0/- 76.6/- 0.614 0.662 79.1/- 79.5/- - - - - Yes
MFM(B)1 [69] 2019/ICLR 0.877 0.706 -/81.7 -/81.6 0.568 0.717 -/84.4 -/84.3 - - - - Yes
MulT(B)1 [35] 2019/ACL 0.861 0.711 81.5/84.1 80.6/83.9 0.580 0.703 -/82.5 -/82.3 0.453 0.564 78.6 64.8 Yes
MISA(B)2 [70] 2020/MM 0.804 0.764 80.8/82.1 80.8/82.0 0.568 0.724 82.6/84.2 82.7/84.0 - - - - Yes
MAG(B)2 [71] 2020/ACL 0.731 0.789 82.5/84.3 82.6/84.3 0.539 0.753 83.8/85.2 83.7/85.1 - - - - Yes

Self-MM(B)3 [64] 2021/AAAI 0.724 0.789 83.0/84.8 83.1/84.8 0.535 0.759 81.9/84.9 81.6/85.0 0.425 0.595 80.0 80.4 No
AFSelf�MM 0.713 0.795 83.8/85.6 83.9/85.6 0.532 0.763 83.1/85.5 82.8/85.6 0.416 0.612 80.6 80.7 No

For Acc-2 and F1, we first transform yi and ŷi into a
binary class label li 2 f0; 1g and l̂i 2 f0; 1g, respectively.
There are two transformation ways: negative/non-negative
(non-exclude zero), i.e.

li =

(
1; if yi � 0;

0; if yi < 0;
and l̂i =

(
1; if ŷi � 0;

0; if ŷi < 0;

and negative/positive (exclude zero), i.e.

li =

(
1; if yi > 0;

0; otherwise;
and l̂i =

(
1; if ŷi > 0;

0; otherwise:

For the second way, we first need to remove elements yi and
ŷi from y and ŷ when yi = 0. Then, li and l̂i can be used to
compute Acc-2 and F1 according to Eq. 12.

Experimental results: As shown in Table 17, our model
surpasses the compared methods on most of the evaluation-
s, which indicates that our proposed method can be flexibly
coupled into deep fusion models and further improve their
performance. That is, deep fusion models also can benefit
from the association-based fusion strategy.

4.3 More studies

4.3.1 Analysis on Associated Data and Orthogonal Data
In this experiment, we evaluate the performance of AF on
the associated data and the orthogonal data. Specifically, let
X denote the associated data (original data), then we use
PCA to obtain its orthogonal data XPCA by letting XPCA

preserve 100% energy of X . To eliminate the effect of PCA
on the results, we simultaneously ensure that LR achieves
the same accuracy on X and XPCA that is the baseline
shown in purple in Fig. 8. It should be noted that the feature
variables ofXPCA are orthogonal to each other when L = 1;
while the association between features of XPCA will be
enhanced by the feature boosting step in AF when L > 1.

Fig. 8 shows the classification accuracies of AF versus
L on wiki, wikiv2, Tvgraz and each modality of them.
In most case, we can see that (1) AF on the associated
data X perform better than the orthogonal data XPCA. For
example, as shown in Fig. 8(g), its classification accuracy
decreases from 50:60% to 30:20% when the features from
image modality of Tvgraz that is a highly associated dataset
become orthogonal to each other using PCA when L = 1. (2)
AF performs worse on the orthogonal data XPCA when L
is smaller. For example, the classification accuracy is lower
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Fig. 8: Performance comparison on associated data and orthogonal data

than that of the baseline on the image on Wiki, Wiki and
text on Wikiv2. On the other hand, the accuracy of AF on
the orthogonal data increases as L increases, which indicates
that AF can still work well on the orthogonal data by feature
boosting. These results clearly show that the AF is robust to
the associated data or orthogonal data.

4.3.2 Impact Analysis of Association Measures

In this experiment, we investigate the effect of several
popular association measures on the performance of the
AF, including pearson correlation (PC), normalized mutual
information (NMI), distance correlation (DC) [4], maximal
information coefficient (MIC) [5], and MICe [75]. Due to the
highly computational complexity of these measures except
PC, we reduce image feature dimension from 1024 to 128
using PCA for improving their computational efficiency on
wiki2 and TVGraz. Moreover, two efficient tools: dcor8 and

8. https://github.com/vnmabus/dcor
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Fig. 9: Performance comparison among different association measures

TABLE 18: Running time (s) of computing association between features
using different methods when L = 10

Datasets PC NMI DC MIC MICe

Wiki 1.15 401.54 441.90 3138.38 3890.20
Wikiv2 2.25 985.00 1293.28 4535.14 4433.61
TVGraz 1.56 956.77 1061.97 3539.15 3185.57

minepy9 are used to compute DC, MIC and MICe. AF uses
LR as the base classifier.

Fig. 9 shows the classification accuracies of AF with
different association measures on Wiki, Wikiv2, Tvgraz and
each modality of them. We can observe that (1) all MMC
methods that are coupled with AF with PC, NMI, DC, MIC
and MICe can achieve competitive and similar performance
with the baseline that is obtained on the original data shown
in purple in Fig. 9. This indicates that the association-based
fusion strategy does work; (2) As shown in Fig. 9 (a)-(c), (e)
and (h), AF with PC achieves competitive and similar per-
formance with other association measures; As shown in Fig.
9 (d) and (g), AF with NMI, MIC and MICe achieves better
than that with PC on the orthogonal datasets. These results
suggest that on the one hand more advanced association
measures are needed to obtain a better association matrix
on datasets with complex relations. On the other hand,
the association matrix obtained by PC is able to achieve a
satisfactory performance; (3) Besides, as shown in Table 18,
PC is more high-efficiency than other measures. Hence, PC
is more practical in high-dimensional datasets.

Based on the above observations, some suggestions in
practice on choosing association measure are given. When
the dimension d of features is lower, the NMI, MIC or MICe
and the bigger L are suggested to use; when the dimension
d of features is larger, PC is suggested.

9. https://github.com/minepy/minepy

TABLE 19: Performance comparison with different base classifiers

Datasets Methods Accuracy Precision Recall F1 Kappa

Wiki AFKNN 0.6840 0.6667 0.6559 0.6546 0.6456
KNN 0.6638 0.6457 0.6391 0.6357 0.6230

Wikiv2 AFKNN 0.8268 0.8169 0.8279 0.8193 0.8057
KNN 0.8066 0.8049 0.8076 0.8024 0.7830

TVGraz AFKNN 0.7360 0.7722 0.7407 0.7421 0.7062
KNN 0.6960 0.7419 0.7036 0.7043 0.6621

Wiki AFSV M 0.7027 0.6799 0.6485 0.6488 0.6650
SVM 0.6739 0.6424 0.6192 0.6116 0.6325

Wikiv2 AFSV M 0.8398 0.8463 0.8283 0.8346 0.8198
SVM 0.7893 0.8350 0.7469 0.7702 0.7621

TVGraz AFSV M 0.8540 0.8571 0.8497 0.8505 0.8373
SVM 0.7160 0.8045 0.6987 0.7116 0.6823

Wiki AFRF 0.7157 0.6874 0.6761 0.6806 0.6804
RF 0.6724 0.6377 0.6309 0.6328 0.6321

Wikiv2 AFRF 0.8139 0.8066 0.7934 0.7983 0.7906
RF 0.7056 0.6919 0.6892 0.6876 0.6690

TVGraz AFRF 0.9160 0.9170 0.9122 0.9138 0.9063
RF 0.8920 0.8877 0.8870 0.8869 0.8796

TABLE 20: Ablation study on each component of AF. 7 and Xdenote
that the corresponding step is not used and used, respectively.

Datasets Step 1 Step 2 Accuracy Precision Recall F1 Kappa

Wiki

7 7 0.6739 0.6420 0.6186 0.5806 0.6324
7 X 0.6854 0.6268 0.6290 0.6073 0.6454
X 7 0.6869 0.6586 0.6429 0.6484 0.6477
X X 0.6941 0.6380 0.6398 0.6213 0.6552

Wiki2

7 7 0.8066 0.8360 0.7652 0.7804 0.7815
7 X 0.8139 0.8276 0.7874 0.7975 0.7903
X 7 0.8196 0.8108 0.8029 0.8052 0.7971
X X 0.8384 0.8418 0.8258 0.8309 0.8182

Tvgraz

7 7 0.7640 0.8249 0.7491 0.7584 0.7361
7 X 0.8020 0.8149 0.7894 0.7936 0.7790
X 7 0.7940 0.8162 0.7928 0.7944 0.7707
X X 0.8740 0.8819 0.8678 0.8713 0.8595

4.3.3 Impact Analysis of Base Classifiers

In this experiment, we investigate the effect of the choice
of base classifier h on the performance of the AF. Ta-
ble 19 reports the performance comparison of AF in-
stantiated with different choices of base learner h (h 2
fKNN; SVM, random forest (RF)g) on the Wiki, Wikiv2 and
Tvgraz datasets. The three base classifiers are from python
machine learning library: sklearn and adopt their default
parameter settings. As shown in Table 19, each base clas-
sifier armed with AF outperforms itself in all cases, which
further shows the generality and effectiveness of AF.

4.3.4 Ablation Study on Each Component of AF

The proposed AF consists of two steps, i.e., feature boosting
(Step 1) and association-based fusion (Step 2). This section
aims to evaluate the importance of each step via an ablation
study in Table 20. In the experiment, the base classifier
adopts LR, the association measure adopts PC, and the
feature boosting rate L takes value from f1; 2; � � � ; 10g.
Based on Table 20, one can see that, compared to the method
without Step 1 and 2, the methods with Step 1 or/and
2 achieve the best performance. That is, each step in AF
contributes to performance gain and the combination of this
two steps performs best in most cases. The observations sug-
gest that the both the high-order information that enhances
non-linear ability of the feature space and the association
information that is used to model the interactions among
intra-modal features play an important role in MMC.
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5 CONCLUSION

In this paper, we proposed a novel interpretative
association-based fusion MMC model (AF) which makes
an effort to obtain a fusion space by simultaneously con-
sidering the high-order information of features and the
associations between features. We have demonstrated that
AF with a naive but effective metric of associations between
features, i.e. Pearson correlation coefficient, can deal with
MMC very well. These results suggest that more efficient
implementations of AF could be obtained if more effort is
made.

The intra-modal feature fusion has been validated to
be very successful using association information between
features in MMC. We in this paper provide a very natural
way for introducing the association-based fusion strategy
into multi-modal data fusion for MMC. New developments
in techniques of associations mined from feature space can
be readily integrated with MMC in the framework of AF.
In the future, it is an interesting attempt to replace statistics
structure-based strategy with the learning-based strategy in
the procedure of mining associations between features in
AF. That is, the associations between features directly are
learned from given datasets in a data-driven manner.

ACKNOWLEDGMENTS

The authors are very grateful to the editors and review-
ers for their valuable comments and suggestions. This
work was supported by the Key Program of the National
Natural Science Foundation of China (No. 62136005), Na-
tional Key Research and Development Program of China
(No. 2020AAA0106100), Key R&D Program (International
Science and Technology Cooperation Project) of Shanx-
i Province, China (No. 201903D421003), Program for the
Young San Jin Scholars of Shanxi (No. 2016769), Young
Scientists Fund of the National Natural Science Foundation
of China (Nos. 62106132, 61802238, 61906114, 61906115,
62006146), the 1331 Engineering Project of Shanxi Province,
China, and Scientific and Technological Innovation Pro-
grams of Higher Education Institutions in Shanxi (Nos.
2021L286, 2020L0036).

REFERENCES
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