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Abstract

Fuzzy rough set method provides an effective approach to data mining and knowledge discovery from hybrid data

including categorical values and numerical values. However, its time-consumption is very intolerable to analyze data

sets with large scale and high dimensionality. Many heuristic fuzzy-rough feature selection algorithms have been

developed however, quite often, these methods are still computationally time-consuming. To further improve, we

propose an accelerator, called forward approximation, which combines sample reduction and dimensionality reduc-

tion together. The strategy can be used to accelerate a heuristic process of fuzzy-rough feature selection. Based on

the proposed accelerator, an improved algorithm is designed. Through the use of the accelerator, three representa-

tive heuristic fuzzy-rough feature selection algorithms have been enhanced. Experiments show that these modified

algorithms are much faster than their original counterparts. It is worth noting that the performance of the modified

algorithms becomes more visible when dealing with larger data sets.

Key words: Rough sets; Fuzzy rough sets; Feature selection; Forward approximation; Accelerator; Granular

computing

1. Introduction

There are many factors that motivate the inclusion of a feature selection step in a variety of fields, such as data

mining, machine learning and pattern recognition, which addresses the problem of selecting those input features that

are most predictive of a given outcome [31], [33], [34], [41]. Databases expand quickly not only in the rows (objects)
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but also in the column (features) nowadays [3]. In recent several years, big data analysis is becoming a new hot topic.

For a task of data analysis, a given data set is called big data if it can not be efficiently processed via existing methods.

In some tasks of data analysis, some of features are irrelevant to the learning or problem solving. It is likely that the

omission of some features will not seriously increase error probability. In such cases, the loss of optimality may not

only be tolerable but even desirable relatively to the costs involved.

In the framework of rough set theory, feature selection is also called attribute reduction [8], [43], [44], which

preserves the original meaning of the features after reduction. The classical rough set model, proposed by Pawlak

[22], [23], is based on crisp equivalence relations and crisp equivalence classes. It is only applicable to categorical

attribute reduction and knowledge discovery. In order to deal with numerical and categorical data (or a mixture of

both) in data sets, fuzzy rough set model was first proposed by Dübois and Prade [6], which combines rough set

and fuzzy set together. The lower/upper approximation in these fuzzy rough set models tries to give a membership

function of each object to a set. As Dübois and Prade defined, if a fuzzy set is approached by a family of crisp

sets in the same universe, then the corresponding lower/upper approximation pair is called a rough fuzzy set; and if

a crisp/fuzzy set is approached by a family of fuzzy sets in the same universe, then the corresponding lower/upper

approximation pair is called a fuzzy rough set. To widely apply the fuzzy rough set method, many extended versions

and relative applications have been developed, cf. [10], [12], [13], [20], [21], [24], [25], [30], [35], [36], [39], [40],

[42], [46]-[48]. In particular, to keep the same form as classical rough set by Pawlak, Hu et al. [10] proposed a novel

fuzzy rough model with a crisp lower/upper approximation. In fact, in the new model, the lower approximation and

the upper approximation can be seen as the 1-cut/strong 0-cut of original counterparts in Dübois’s model, respectively.

Taking the same idea into account, Wang et al. [36] developed a generalized fuzzy rough model in which a β-cut is

used to define its lower/upper approximation. These two methods have a consistent form with Pawlak’s rough set, and

their lower/upper approximations induced by a given cut are crisp approximations rather than fuzzy approximations.

According to Dübois and Prade’s definition, each of these rough set models is a fuzzy rough set.

Attribute reduction using fuzzy rough sets is often called fuzzy-rough feature selection. To support efficient feature

selection, many heuristic algorithms have been developed in fuzzy rough set theory, cf. [2], [4], [9]-[11], [15]-[17],

[36]. Each of these feature selection methods can extract a single reduct from a given decision table. For convenience,

from the viewpoint of heuristic functions, we classify these feature selection methods into two categories: fuzzy

positive region reduction and fuzzy information entropy reduction. Hence, we only review two kinds of representative

heuristic fuzzy-rough feature selection methods.

(1) Fuzzy positive region reduction

The concept of positive region was proposed by Pawlak in [22], which is used to measure the significance of a
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condition attribute in a decision table. Then, Hu and Cercone [14] proposed a heuristic attribute reduction method,

called positive region reduction, which remains the positive region of target decision unchanged. Under Dübois’s

fuzzy rough set model, Jensen and Shen [15]-[17] developed a series of heuristic fuzzy-rough feature selection algo-

rithms based on fuzzy positive region. Bhatt and Gopal [2] proposed a modified version to improve computational

efficiency. Under Hu’s fuzzy rough set model and Wang’s fuzzy rough set model, Hu et al. [10] extended the method

from the literature [14] to select a feature subset from hybrid data. Owing to the consistency of ideas and strategies of

these methods, we regard the method from [10] as their representative.

(2) Fuzzy information entropy reduction

The entropy reducts have first been introduced in 1993/1994 by Skowron in his lectures at Warsaw University.

Wang et al. [37] used conditional entropy of Shannon’s entropy to calculate the relative attribute reduction of a

decision information system. Hu et al. extended the entropy to measure the information quantity in fuzzy sets

and applied its conditional entropy to feature selection from hybrid data [11]. This reduction method remains the

conditional entropy of a target decision unchanged. The fuzzy information entropy is an important approach to

characterizing the uncertainty of a fuzzy binary relation, which can used to select a feature subset from a given big

data set [11], [12].

Each of these above methods preserves a particular property of a given decision table. However, these above

methods are still computationally very expensive, which are intolerable for dealing with large-scale data sets with

high dimensions. So, this kind of attribute reduction problems can be regarded as data analysis of big data. The

objective of this study is to focus on how to improve the time efficiency of a heuristic fuzzy-rough feature selection

algorithm.

In a recent published paper in Artificial Intelligence, to overcome the shortcoming of computationally time-

consuming of all heuristic attribute reduction algorithms, Qian et al. [26] proposed an accelerator for attribute reduc-

tion in rough set theory, which is based on a theoretic framework called positive approximation. Using the experience

of the method for reference, in this paper, we wish to develop an extended version of the accelerator for accelerating

fuzzy-rough feature selection. Its motivation is mainly caused by the three issues: (1) a fuzzy rough set including

fuzzy-rough feature selection is a kind of very important models in rough set theory; (2) the accelerator proposed by

Qian et al. can not be used to accelerate feature selection for hybrid data but that for symbolic data; and (3) heuristic

functions in fuzzy-rough feature selection are constructed by the membership of each object, which bring different

methods of feature selection. Taking these three issues into account, one deeds to develop an extended version of

the accelerator for accelerating fuzzy-rough feature selection algorithms. The main advantage of this approach stems
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from the fact that the new accelerator can improve the time efficiency of a heuristic fuzzy-rough feature selection,

which provides a vehicle of making algorithms of fuzzy-rough set based feature selection techniques faster. By incor-

porating the new accelerator into each of the above two kinds of representative heuristic attribute reduction methods,

we construct their modified versions. Numerical experiments show that each of the modified methods can greatly

reduce computing time while obtaining an attribute reduct. We would like to stress that the improvement becomes

more profoundly visible when the data sets under discussion get larger.

The study is organized as follows. Several fuzzy rough set models are briefly reviewed in Section 2. In Section

3, we establish the forward approximation framework and investigate some of its main properties. In Section 4, we

develop a modified attribute reduction algorithm based on the forward approximation. Experiments on six public data

sets show that these modified algorithms are much faster than their original counterparts in terms of computational

time. Finally, Section 5 concludes this paper by bringing some remarks and discussions.

2. Review on fuzzy rough set models

In this section, we review three representative fuzzy-rough set models and some related concepts.

Given a nonempty finite set U, R̃ is a fuzzy binary relation over U, denoted by a matrix

M(R̃) =



r11 r12 · · · r1n

r21 r22 · · · r2n

· · · · · · · · · · · ·
rn1 rn2 · · · rnn



, (1)

where ri j ∈ [0, 1] is the relation value between xi and x j. Some operations of relation matrices are defined as

1) R̃1 = R̃2 ⇔ R̃1(x, y) = R̃2(x, y);

2) R̃ = R̃1 ∪ R̃2 ⇔ R̃ = max{R̃1(x, y), R̃2(x, y)};
3) R̃ = R̃1 ∩ R̃2 ⇔ R̃ = min{R̃1(x, y), R̃2(x, y)};
4) R̃1 ⊆ R̃2 ⇔ R̃1(x, y) ≤ R̃2(x, y).

If using the terms of granular computing, we denote the coarseness/finess relationship between any two fuzzy

binary relations by R̃1 � R̃2, which is equivalent to R̃1 ⊆ R̃2 and R̃1(x, y) ≤ R̃2(x, y) for any x and y. It can be said that

the fuzzy binary relation R̃1 is much finer than the fuzzy binary relation R̃2. Symmetrically, it also can be written as

R̃2 � R̃1.
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The granular structure of the universe generated by a fuzzy binary relation R̃ is defined as

〈U, R̃〉 = ([x1]R̃, [x2]R̃, · · · , [xn]R̃), (2)

where [xi]R̃ = ri1/x1 + ri2/x2 + · · · + rin/xn. [xi]R̃ is the fuzzy neighborhood of xi and ri j is the degree of xi equivalent

to x j. Here, “+” means the union of elements. The cardinality of [xi]R̃ can be calculated with

|[xi]R̃| =
n∑

j=1

ri j, (3)

which appears to be a natural generalization of the cardinality of a crisp set.

In this case, [xi]R̃ is a fuzzy set and the family of [xi]R̃ forms a fuzzy concept system of the universe. This system

will be used to approximate the object subset of the universe.

Let X̃ be a fuzzy set. Then, it can be represented as

X̃ = µX̃(x1)/x1 + µX̃(x2)/x2 + · · · + µX̃(xn)/xn, (4)

where µX̃(x j) denotes the membership degree of the object x j in X̃.

It is well known that, a categorical attribute can induce a crisp equivalence relation on the universe and generate a

family of crisp information granules, whereas a numerical attribute will give a fuzzy binary relation and form a set of

fuzzy information granules [11]. As crisp information granules are a special case of fuzzy ones, we will consider all

of them as fuzzy ones in the following. Given an information system S = (U,C ∪ D), B, B1, B2 ⊆ C. We means R̃B as

the fuzzy binary relation induced by the attribute subset B. Then we have

1) R̃B = ∩a∈BR̃a;

2) R̃B1∪B2 = R̃B1 ∩ R̃B2 .

The first fuzzy rough set model was introduced by Dübois and Prade [6]. By their definition, a universe of objects

U = {x1, x2, . . . , xn} is described by a fuzzy binary relation R̃. Given X ⊆ U a crisp subset of objects, the memberships

of an object xi in a fuzzy rough set (R̃(X), R̃(X)) of fuzzy sets on U are described as


µR̃(X)(xi) = inf
x j∈U

max{1 − R̃(xi, x j), µX(x j)},

µ
R̃(X)

(xi) = sup
x j∈U

min{R̃(xi, x j), µX(x j)},

where U is a nonempty universe and R is a fuzzy binary relation on U.
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To keep the same form as classical rough set model, Wang et al. [36] proposed a new fuzzy rough set model (for

simplification, called Wang’s fuzzy rough set), which is explicitly expressed as follows.

Let 〈U, R̃〉 be a fuzzy approximation space, and X ⊆ U a crisp subset of objects. Wang’s fuzzy lower and upper

approximation of X can be defined as


R̃β(X) = {xi ∈ X | R̃(xi, x j) ≤ 1 − β, ∀x j ∈ U − X},
R̃β(X) = {xi ∈ U | ∃x j ∈ X, such that R̃(xi, x j) ≥ β},

where R̃(xi, x j) is the similarity degree between xi and x j with respect to R̃. The order pair 〈R̃βX̃, R̃βX̃〉 is called a

β-fuzzy rough set, in which a β-cut is used to define its lower/upper approximation.

In a recent paper, Hu et al. [11] gave another definition of a fuzzy rough set in the context of hybrid data (for

simplification, called Hu’s fuzzy rough set), which is shown as follows.

Let 〈U, R̃〉 be a fuzzy approximation space and X̃ a fuzzy subset of U. The lower approximation R̃X̃ and upper

approximation R̃X̃ are defined as [10]


R̃X̃ = {xi | [xi]R̃ ⊆ X̃, xi ∈ U},
R̃X̃ = {xi | [xi]R̃ ∩ X̃ , Ø, xi ∈ U},

where [xi]R̃ ⊆ X̃ means µ[xi]R̃
(xi) ≤ µX̃(xi), and [xi]R̃ ∩ X̃ , Ø implies that min{µ[xi]R̃

(xi), ; µX̃(xi)} , 0, Ø = { 0
x1

+ 0
x2

+

· · · + 0
xn
}. The order pair 〈R̃X̃, R̃X̃〉 is called a fuzzy rough set. In fact, in the new model, the lower approximation and

the upper approximation can be seen as the 1-cut/strong 0-cut of original counterparts in Dübois’s model, respectively.

It is easy to see that given a lower approximation in Dübois’s fuzz rough set model, one easily obtain the cor-

responding crisp lower approximation with a α-cut, and given a upper approximation in Dübois’s fuzzy rough set

model, one also easily get its crisp upper approximation with a β-cut. Hence, one can obtain crisp approximation of

an object set according to a user’s requirement. Without loss of generality, we will select Hu’s fuzzy rough model as

their representative in this study.

A decision table is an information system S = (U,C ∪ D), where C is called a condition attribute set and D is

called a decision attribute set [10]. In practical decision-making issues, in general, the decision attribute set D can

induce an equivalence partition, i.e., a crisp classification. In this paper, we only focus on this kind of decision tables.

Assume the objects are partitioned into r mutually exclusive crisp subsets {Y1,Y2, · · · ,Yr} by the decision attribute D.

Given a decision table S = (U,C ∪ D) and a subset B ⊆ C, and R̃B is the fuzzy similarity relation induced by B, then

one can define the lower and upper approximations of the decision attribute D as


R̃BD = {R̃BY1, R̃BY2, · · · , R̃BYr},
R̃BD = {R̃BY1, R̃BY2, · · · , R̃BYr}.
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Denoted by POS B(D) =
⋃r

i=1 R̃BYi, it is called the positive region of D with respect to the condition attribute set B.

The crisp positive region in traditional rough set theory is defined as the union of the lower approximations. In the

original fuzzy rough set, the membership of an object belonging to the fuzzy positive region can be defined by

µPOS B(D)(x) = supX∈U/D µB(X)(x),

where µB(X)(x) = infx j∈U max{1 − B̃(x, x j), µX(x j)}.

In the above three fuzzy rough set models, many efficient fuzzy-rough feature selection algorithms have been

developed [2], [9]-[11], [15]-[17], [36]. However, these algorithms are still computationally very expensive, which

are intolerable for dealing with large-scale data sets with high dimensions. The objective of this study is to focus on

how to improve the time efficiency of a heuristic fuzzy-rough feature selection algorithm. In a recent published paper

in Artificial Intelligence, to overcome the shortcoming of computationally time-consuming of all heuristic attribute

reduction algorithms, Qian et al. [26] proposed an accelerator for attribute reduction in rough set theory, which is

performed on a gradually reduced universe. Using the experience of the method for reference, in this paper, we wish

to develop an extended version of the accelerator for accelerating fuzzy-rough feature selection. From the point of

view, in next study, we decide to use three representative fuzzy-rough feature selection algorithms for explaining and

verifying the mechanism and efficiency of the extended accelerator.

3. Forward approximation (FA): an accelerator to fuzzy-rough feature selection

In this section, we introduce a new set-approximation approach called forward approximation and investigate some

of its important properties, in which a given set (also called a target concept in rough set theory) is approximated by

a forward granulation world [29]. Given a decision table S = (U,C ∪ D), U/D = {Y1,Y2, · · · ,Yr} is called a target

decision, in which each equivalence class Yi (i ≤ r) can be regarded as a target concept. These concepts and properties

will be helpful to understand the notion of a granulation order and set approximation under a granulation order.

Definition 1. Let P = {R̃1, R̃2, · · · , R̃n} be a family of fuzzy binary relations with R̃1 � R̃2 � · · · � R̃n, and X a crisp set.
Given Pi = {R̃1, R̃2, · · · , R̃i}, we define Pi-lower approximation Pi(X) and Pi-upper approximation Pi(X) of Pi-positive
approximation of X as


Pi(X) =

i⋃
k=1

R̃kXk,

Pi(X) = R̃iX,

where X1 = X and Xk = X −⋃k−1
j=1 R̃ jX j, k = 2, 3, · · · , n, i = 1, 2, · · · , n.

Correspondingly, the boundary of X is given as
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BNPi (X) = Pi(X) − Pi(X).

Theorem 1. Let P = {R̃1, R̃2, · · · , R̃n} be a family of fuzzy binary relations with R̃1 � R̃2 � · · · � R̃n, and X a crisp set.
Given Pi = {R̃1, R̃2, · · · , R̃i}, then ∀Pi (i = 1, 2, · · · , n), we have

Pi(X) ⊆ X ⊆ Pi(X),
P1(X) ⊆ P2(X) ⊆ · · · ⊆ Pi(X).

Theorem 2. Let P = {R̃1, R̃2, · · · , R̃n} be a family of fuzzy binary relations with R̃1 � R̃2 � · · · � R̃n, and X a crisp set.
Given Pi = {R̃1, R̃2, · · · , R̃i}, then ∀Pi (i = 1, 2, · · · , n), we have

αP1 (X) ≤ αP2 (X) ≤ · · · ≤ αPi (X),

where αPi (X) =
|Pi(X)|
|Pi(X)| is the approximation measure of X with respect to Pi.

Definition 2. Let P = {R̃1, R̃2, · · · , R̃n} be a family of fuzzy binary relations with R̃1 � R̃2 � · · · � R̃n and U/D =

{Y1,Y2, · · · ,Yr}. Lower approximation and upper approximation of D with respect to Pi are defined as
{

PiD = {Pi(Y1), Pi(Y2), · · · , Pi(Yr)},
PiD = {Pi(Y1), Pi(Y2), · · · , Pi(Yr)}.

PiD is also called the positive region of D with respect to the granulation order Pi, denoted by POS U
Pi

(D) =
⋃r

k=1 PiYk.

Theorem 3. (Recursive expression principle) Let P = {R̃1, R̃2, · · · , R̃n} be a family of fuzzy binary relations with
R̃1 � R̃2 � · · · � R̃n and U/D = {Y1,Y2, · · · ,Yr}. Given Pi = {R̃1, R̃2, · · · , R̃i}, we have

POS U
Pi+1

(D) = POS U
Pi

(D) ∪ POS Ui+1

R̃i+1
(D),

where U1 = U and Ui+1 = U − POS U
Pi

(D).

The dependency function is used to characterize the dependency degree of an attribute subset with respect to a

given decision [7], [8], [27], [28]. Given a decision table S = (U,C ∪ D), the dependency function of condition

attribute set C with respect to the decision attribute set D is formally defined as γC(D) = |POS U
C (D)|/|U |. Using this

notation, we give the definition of dependency function of a granulation order P with respect to D in the following.

Definition 3. A dependency function involving a granulation order P and D is defined as

γP(D) =
|POS U

P (D)|
|U | ,

where | · | denotes the cardinality of a set and 0 ≤ γP(D) ≤ 1.

The dependency function reflects the granulation order P’s power to dynamically approximate D. This dependency

function can be used to measure the significance of attributes relative to the decision and construct a heuristic function

for designing an attribute reduction algorithm.
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4. Fuzzy-rough feature selection based on forward approximation

4.1. Fuzzy-rough feature selection algorithms

In fuzzy-rough feature selection, to support efficient attribute reduction, many heuristic attribute reduction methods

have been developed, in which a forward greedy search strategy is usually employed, cf. [2], [9]-[11], [15]-[17], [36].

In this kind of attribute reduction approach, important measures of attributes are used for heuristic functions, which

can be used in a forward feature selection. It is deserved to point out that each kind of attribute reduction tries to

preserve a particular property of a given decision table.

In each forward greedy attribute reduction approach, we take the attribute with the maximal significance into the

attribute subset in each loop until this feature subset satisfies the stopping criterion, and then we can get an attribute

reduct. In this algorithm framework, we denote the evaluation function (stop criterion) by EFU(B,D) = EFU(C,D).

For example, if one adopts Shannon’s conditional entropy, then the evaluation function is HU(B,D) = HU(C,D). That

is to say, if EFU(B,D) = EFU(C,D), then B is said to be an attribute reduct. Formally, a forward greedy attribute

reduction algorithm can be written as follows.

Algorithm 1. A general forward greedy attribute reduction algorithm

Input: Decision table S = (U,C ∪ D);

Output: One reduct red.

S tep 1: red ← Ø; //red is the pool to conserve the selected attributes

S tep 2: While EF(red,D) , EF(C,D) Do //This provides a stopping criterion.

{
B← C − red,

Select a0 ∈ B which satisfies S ig(a0, red,D,U) = max{S ig(ak, red,D,U), ak ∈ B},
If S ig(a0, red,D,U) > 0, then red ← red ∪ {a0}
};
S tep 3: Return red and end.

This algorithm can obtain an attribute reduct from a given decision table. Figure 1 displays the process of attribute

reduction based on the forward greedy attribute reduction algorithm in rough set theory, which is helpful for more

clearly understanding the mechanism of the algorithm.
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Figure 1: The process of forward greedy attribute reduction algorithm

4.2. Three representative significance measures of attributes

For efficient attribute reduction, many heuristic attribute reduction methods have been developed in fuzzy rough

set theory, see [2], [9]-[11], [15]-[17], [36]. For convenience, as was pointed out in the introduction part of this paper,

we only focus on the three representative fuzzy-rough feature selection methods here.

Given a decision table S = (U,C ∪ D), one can obtain 〈U, R̃C〉 = ([x1]R̃C
, [x2]R̃C

, · · · , [xn]R̃C
) and the decision

U/D = {Y1,Y2, · · · ,Yn}. Through these notations, in what follows we review three representative significance measures

of attributes.

For attribute reduction, Hu and Cercone [14] proposed a heuristic attribute reduction method, called positive region

reduction (PR), which remains the positive region of target decision unchanged. Hu, Xie and Yu [10] extended this

method to fuzzy-rough feature selection, called fuzzy positive region reduction (FPR). In this method, the significance

measures of attributes are defined as follows.

Definition 4. Let S = (U,C ∪ D) be a decision table, B ⊆ C and ∀a ∈ C − B. The significance measure of a in B is
defined as

S ig1(a, B,D,U) = γB∪{a}(D) − γB(D),

where γB(D) =
|POS U

B (D)|
|U | =

|⋃r
i=1 R̃BYi |
|U | .

As Shannon’s information entropy [32] was introduced to search reducts in classical rough set model. In fact,

several authors also have used variants of Shannon’s entropy to measure uncertainty in rough set theory and construct

heuristic algorithm of attribute reduction [1], [5], [18], [19], [30], [38]. Wang et al. used its conditional entropy

to calculate the relative attribute reduction of a decision information system [37]. Hu, Xie and Yu [11] proposed

a so-called fuzzy information entropy to fuzzy rough set model and used its fuzzy conditional entropy to design a

heuristic feature selection algorithm. This reduction method remains the fuzzy conditional entropy of target decision

unchanged, denoted by FSCE, in which the fuzzy conditional entropy reads as
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H(D|B) = − 1
|U |
|U |∑
i=1

log
|[xi]R̃B

∩[xi]R̃D
|

|[xi]R̃B
| .

Using the fuzzy conditional entropy, the definitions of the significance measures are expressed in the following

way.

Definition 5. Let S = (U,C ∪ D) be a decision table, B ⊆ C and ∀a ∈ C − B. The significance measure of a in B is
defined as

S ig2(a, B,D,U) = H(D|B) − H(D|B ∪ {a}).

In the original fuzzy rough set, Jensen and Shen [16] extended this method to fuzzy-rough feature selection. In

this method, the significance measures of attributes can be formally written as follows.

Definition 6. Let S = (U,C ∪ D) be a decision table, B ⊆ C and ∀a ∈ C − B. The significance measure of a in B is
defined as

S ig3(a, B,D,U) = γB∪{a}(D) − γB(D),

where γB(D) =
|POS U

B̃
(D)|

|U | =

∑
x∈U µPOS U

B (D)(x)

|U | .

In a heuristic fuzzy-rough feature selection algorithm, based on the above definitions, one can find an attribute

reduct by gradually adding selected attributes.

4.3. Rank preservation principle

As mentioned above, each of significance measures of attributes provides some heuristics to guide the mechanism

of forward searching a feature subset. Unlike the discernibility matrix, the computational time of the heuristic algo-

rithms has been largely reduced when only one attribute reduct is needed. Nevertheless, these algorithms still could

be very time consuming. To introduce an improved strategy of heuristic attribute reductions, we concentrate on the

rank preservation of the four significance measures of attributes based on the positive approximation encountered in a

decision table.

Firstly, we investigate the rank preservation of significance measures of attributes based on the dependency

measure. For more clear representation, we denote the significance measure of an attribute by S igouter
∆

(a, B,D,U)

(∆ = {1, 2, 3, 4}), which denotes the value of the significance measure on the universe U. One can prove the following

theorem of rank preservation.

Theorem 4. Let S = (U,C ∪ D) be a decision table, B ⊆ C and U
′

= U − POS U
B (D). For ∀a, b ∈ C − B, if

S ig1(a, B,D,U) ≥ S ig1(b, B,D,U), then S ig1(a, B,D,U
′
) ≥ S ig1(b, B,D,U

′
).

Secondly, we research the rank preservation of significance measures of attributes based on the Shannon’s condi-

tional entropy. The following theorem elaborates on the rank preservation of this measure.
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Theorem 5. Let S = (U,C ∪ D) be a decision table, B ⊆ C and U
′

= U − POS U
B (D). For ∀a, b ∈ C − B, if

S ig2(a, B,D,U) ≥ S ig2(b, B,D,U), then S ig2(a, B,D,U
′
) ≥ S ig2(b, B,D,U

′
).

Finally, we research the rank preservation of significance measures of attributes based on the original fuzzy pos-

itive region defined by Jensen and Shen [16]. The following theorem elaborates on the rank preservation of this

measure.

Theorem 6. Let S = (U,C∪D) be a decision table, B ⊆ C and U
′
= U−{x|µPOS U

B (D)(x) = 1, x ∈ U}. For ∀a, b ∈ C−B,
if S ig3(a, B,D,U) ≥ S ig3(b, B,D,U), then S ig3(a, B,D,U

′
) ≥ S ig3(b, B,D,U

′
).

From these theorems, one can see that the rank of attributes in the process of attribute reduction will remain

unchanged after reducing the lower approximation of positive approximation. This mechanism can be used to improve

the computational performance of a heuristic attribute reduction algorithm, while retaining the same selected feature

subset.

4.4. Accelerated versions

The objective of rough set-based feature selection is to find a subset of attributes which retains some particular

properties as the original data and without redundancy. In fact, there may be multiple reducts for a given decision

table. It has been proven that finding the minimal reduct of a decision table is a NP hard problem. When only

one attribute reduct is needed, based on the significance measures of attributes, some heuristic algorithms have been

proposed, most of which are greedy and forward search algorithms. These search algorithms start with a nonempty

set, and keep adding one or several attributes of high significance into a pool each time until the dependence has not

been increased.

From the discussion in the previous subsection, we can construct an improved forward search algorithm based on

the forward approximation, which is formulated as follows.

Algorithm Q3. An improved feature selection algorithm based on the forward approximation (FA)

Input: Decision table S = (U,C ∪ D);

Output: One feature subset red.

S tep 1: red ← Ø, i← 1, R1 ← red, P1 ← {R1} and U1 ← U; //red is the pool to conserve the selected attributes

S tep 2: While EF(red,D) , EF(C,D) Do //This provides a stopping criterion.

{
Compute the positive region of forward approximation POS U

Pi
(D),

Ui+1 ← U − POS U
Pi

(D),
12



i← i + 1,

B← C − red,

Select a0 ∈ B which satisfies S ig(a0, red,D,Ui) = max{S ig(ak, red,D,Ui), ak ∈ B},
If S ig(a0, red,D,Ui) > 0, then red ← red ∪ {a0},
Ri ← Ri ∪ {a0},
Pi ← {R1,R2, · · · ,Ri};
}
S tep 3: Return red and end.

It deserves to point out that the feature subset obtained by Algorithm Q3 from a given data set may not be a reduct

as commonly used in rough set literature. The result of Q3 may still contain some superfluous attributes.

Computing the significance measure of an attribute S iginner(ak,C,D,U) is one of the key steps in FA, which time

complexity is O(|C||U |2). In Step 2, we begin with the empty set and add an attribute with the maximal significance into

the set in each stage until finding a reduct. This process is called a forward reduction algorithm whose time complexity

is O(
∑|C|

i=1(|C| − i + 1)|Ui|2). However, the time complexity of the original heuristic algorithm is O(
∑|C|

i=1(|C| − i +

1)|U |2). Obviously, the time complexity of FA is much lower than that of each of classical heuristic attribute reduction

algorithms. Hence, one can draw a conclusion that the modified feature selection algorithm based on the forward

approximation (FA) may significantly reduce the computational time for fuzzy-rough feature selection.

To support the substantial contribution of the improved attribute reduction algorithm based on the forward approx-

imation, we summarize two factors of speedup of this accelerator as follows.

(1) One only reserves a much smaller similarity matrix in each iterative loop via gradually decreasing the size of

data set. This is an important factor of the improved algorithm.

(2) Computational time of significance measures of attributes is significantly reduced, which is because that it is

only considered on the gradually reduced universe. It is the other factor of the accelerated algorithm.

Based on the above two speedup factors, we draw such a conclusion that: the modified algorithm can significantly

reduce the computational time of each existing attribute reduction algorithm.

4.5. Time efficiency analysis of algorithms

Some heuristic attribute reduction methods have been developed for hybrid data, cf. [2], [9]-[11], [15]-[17], [36].

The three heuristic algorithms mentioned in subsection 4.2 are very representative. The objective of the following

experiments is to show the performance of time reduction of the proposed framework for selecting a feature subset.

13



Table 1: Data sets description
Data sets Samples Features Classes

1 Image Segmentation 2310 19 7
2 Sonar, mines vs. rocks 208 60 2
3 Wisconsin diagnostic breast cancer (Cancer1) 569 30 2
4 Ionosphere 351 34 2
5 Wisconsin prognostic breast cancer (Cancer2) 198 33 2
6 Wine recognition 178 13 3

The data used in the experiments are outlined in Table 1, which were all downloaded from UCI Repository of machine

learning databases.

For numeric data, we normalize the numerical attribute a into the interval [0, 1] with

a
′
= a−amin

amax−amin
.

The value of the fuzzy similarity degree ri j between objects xi and x j with respect to numerical attribute a is computed

as

ri j =


1 − 4 × |xi − x j|, |xi − x j| ≤ 0.25,

0, otherwise.

As ri j = r ji and rii = 1, 0 ≤ ri j ≤ 1, the matrix M = (ri j)n×n is a fuzzy similarity relation.

From the definition of attribute reduction based on fuzzy rough sets, we know that each modified attribute reduc-

tion algorithm must select an attribute reduct from original attributes. Therefore, in the following experiments, we

only consider attribute reducts obtained and computational time.

In what follows, we apply each of the original algorithms along with its modified version for searching attribute

reducts. To distinguish the computational times, we divide each of these nine data sets into twenty parts of equal size.

The first part is regarded as the 1st data set, the combination of the first part and the second part is viewed as the 2nd

data set, the combination of the 2nd data set and the third part is regarded as the 3rd data set, · · ·, the combination

of all twenty parts is viewed as the 20th data set. These data sets can be used to calculate time used by each of

the original attribute reduction algorithms and the corresponding modifications one and show it vis-a-vis the size of

universe. These algorithms are run on a personal computer with Windows XP and Inter(R) Core(TM)2 Quad CPU

Q9400, 2.66GHz and 3.37GB memory. The software being used is Microsoft Visual Studio 2005 and Visual C#.

14



Table 2: The time and attribute reduction of the algorithms FPR and FA-FPR
FPR algorithm FA-FPR algorithm

Data sets Original features Selected features Time (s) Selected features Time (s)
Image Segmentation 19 15 1499.2031 15 962.3594

Sonar, mines vs. rocks 60 20 135.4218 20 46.7187
Cancer1 30 22 313.7968 22 200.1875

Ionosphere 34 24 213.2187 24 47.1250
Cancer2 33 24 43.3281 24 21.8906

Wine recognition 13 13 2.8906 13 1.7968
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(a) Image Segmentation
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(b) Sonar, mines vs. rocks
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(c) Wisconsin diagnostic breast cancer
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(d) Ionosphere
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(e) Wisconsin prognostic breast cancer
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(f) Wine recognition

Figure 2: Times of FPR and FA-FPR versus the size of data

4.5.1. FPR and FA-FPR

In the sequence of experiments, we compare FPR with FA-FPR on the six real world data sets shown in Table

1. The experimental results of these six data sets are shown in Table 2 and Figure 2. In each of these sub-figures,

the x-coordinate pertains to the size of the data set (the 20 data sets starting from the smallest one), while the y-

coordinate concerns the computing time. Table 2 shows the comparisons of selected features and computational time

with original algorithm FPR and the accelerated algorithm FA-FPR on six data sets. While Figure 2 displays more

detailed change trend of each of two algorithms with size of data set becoming increasing.

It is easy to note from Table 2 and Figure 2 that the computing time of each of these two algorithms increases

with the increase of the size of data. As one of the important advantages of the FA, as shown in Table 2 and Figure

15



Table 3: The time and attribute reduction of the algorithms FSCE and FA-FSCE
FSCE algorithm FA-FSCE algorithm

Data sets Original features Selected features Time (s) Selected features Time (s)
Image Segmentation 19 17 1258.0468 17 900.5781

Sonar, mines vs. rocks 60 41 300.5625 41 50.0000
Cancer1 30 27 228.9218 27 171.8750

Ionosphere 34 24 137.0468 24 43.9218
Cancer2 33 29 44.6562 29 26.8593

Wine recognition 13 13 2.8906 13 2.0937

2, we see that the modified algorithms are much more faster than their original counterparts on the basis of obtaining

an attribute reduct. Sometimes, the effect of this reduction can reduce over two thirds of the computational time. For

example, the reduced time achieves 88.7032 seconds on the data set (Sonar, mines vs. rock), while the reduced time

is 166.0938 seconds on the data set (Ionosphere). Furthermore the differences are profoundly larger when the size of

the data set increases.

4.5.2. FSCE and FA-FSCE

It is well known that, the attribute reduct induced by fuzzy information entropy keeps the fuzzy condition entropy

of original data set, which is based on a more strict definition of attribute reduct. Hence, the attribute reduct obtained

by this approach is often much longer than one induced by the fuzzy positive region reduction.

In what follows, we compare FSCE with FA-FSCE on those six real world data sets shown in Table 1 from com-

putational time and selected feature subsets. Table 3 presents the comparisons of selected features and computational

time with original algorithm FSCE and the accelerated algorithm FA-FSCE on six data sets. While Figure 3 gives

more detailed change trendline of each of two algorithms with size of data set becoming increasing.

From Table 3 and Figure 3, it is easy to see that the modified algorithms is consistently faster than their original

counterparts. Sometimes, the reduced time can almost achieves five-fifths of the original computational time. For

example, the reduced time achieves 250.5625 seconds on the data set (Sonar, mines vs. rocks), and the reduced time

achieves 93.1250 seconds on the data set (Ionosphere). Furthermore the differences are profoundly larger when the

size of the data set increases. Hence, attribute reduction based on the accelerator should be a good solution.

In addition, the fuzzy-rough feature selection algorithm induced by the original fuzzy rough set also can be corre-

spondingly modified. Similar to subsections 4.5.1 and 4.5.2, its improved version is also much faster than the original

one. Hence, we omit its relative experimental analysis.

Remark: In rough set literature, there are three main control structures for constructing an attribute reduct with

a heuristic strategy [40]. They include addition, deletion, and addition+deletion. The proposed method in this study

16
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(a) Image Segmentation
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(b) Sonar, mines vs. rocks
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(c) Wisconsin diagnostic breast cancer
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e 
co

ns
um

pt
io

n

Sizes of the data

 FSCE
 FA-FSCE
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Figure 3: Times of FSCE and FA-FSCE versus the size of data

is successful for the addition strategy only. In fact, how to accelerate those feature selection algorithms with deletion

strategy and addition+deletion strategy are also very interesting issues. However, these are beyond the scope of this

study. We will address them in future work.

5. Conclusions

In this study, a theoretic framework based on rough set theory have been proposed, called the forward approx-

imation, which can be used to accelerate algorithms of heuristic attribute reduction. Based on this framework, an

improved heuristic feature selection algorithm (FSPA) has been presented. Several representative heuristic attribute

reduction algorithms encountered in rough set theory have been revised and modified. Experimental studies pertaining

to six UCI data sets show that the modified algorithms can significantly reduce computing time of attribute reduction.

The results show that the attribute reduction based on the forward approximation is an effective accelerator and can

efficiently obtain an attribute reduct.

In the conclusion section, we summarize the advantages of the accelerator-forward approximation for attribute

reduction and offer some explanatory comments. Based on the theoretical analysis and experimental evidence, we can

affirm that:

• From the stop criterion of the algorithm, it follows that one must obtain an attribute reduct of the decision table.
17



This provides a restriction of keeping the approximation ability of the decision.

From the definition of each of attribute reduction using fuzzy rough sets and the stop criterion of the algorithm,

one can know that one must obtain an attribute reduct of a given decision table when the algorithm is stopped. Hence,

each of the accelerated algorithms does not affect the approximation ability of the attribute reduct induced by the

corresponding method.

• Each of the accelerated algorithms usually comes with a substantially reduced computing time when compared

with amount of time used by the corresponding original algorithm.

Through using the accelerator-forward approximation, the size of data set could be reduced in each loop of each of

modified algorithms. Therefore, the computational time for determining similarity matrix and significance measures

of attributes in the reduced data set would be much smaller than that encountered for the entire data set. Evidently,

these modified algorithms are much faster than the previous methods for the time consumption.

• The performance of these modified algorithms is getting better in presence of larger data sets; the larger the data

set, the more profound computing savings.

The stopping criterion of attribute reduction will be stricter when the data set becomes larger, and the number of

attributes in the reduct induced by a heuristic attribute reduction algorithm usually is much bigger. In this situation,

each of the modified algorithms can delete much more objects from the data set in all loops, and hence can take far

less time for attribute reduction. The greater the size of the data set is, the larger the number of attributes selected,

and the better the performance of these modified algorithms becomes when it comes to computing time. Hence, these

accelerated algorithms are particularly suitable for dealing with attribute reduction in large-scale data sets with high

dimensions.
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Theorem 4. Let S = (U,C ∪ D) be a decision table, B ⊆ C and U
′

= U − POS U
B (D). For ∀a, b ∈ C − B, if

S ig1(a, B,D,U) ≥ S ig1(b, B,D,U), then S ig1(a, B,D,U
′
) ≥ S ig1(b, B,D,U

′
).

Proof. From the definition of S ig1(a, B,D,U) = γB∪{a}(D) − γB(D), we know that its value only depends on the

dependency function γB(D) =
|POS B(D)|
|U | . Since U

′
= U −POS U

B (D), one can know POS U
′

B (D) = Ø and POS U
′

B∪{a}(D) =

POS U
B∪{a}(D) − POS U

B (D). Therefore, we have

S ig1(a,B,D,U)
S ig1(a,B,D,U′ )

=
γU

B∪{a}(D)−γU
B (D)

γU′
B∪{a}(D)−γU′

B (D)

=
|U′ |
|U |
|POS U

B∪{a}(D)|−|POS U
B (D)|

|POS U′
B∪{a}(D)|−|POS U′

B (D)|

=
|U′ |
|U |
|POS U

B∪{a}(D)|−|POS U
B (D)|

|POS U
B∪{a}(D)|−|POS U

B (D)|

=
|U′ |
|U | .

Because |U′ |
|U | ≥ 0 and if S ig1(a, B,D,U) ≥ S ig1(b, B,D,U), then S ig1(a, B,D,U

′
) ≥ S ig1(b, B,D,U

′
). This

completes the proof.

Theorem 5. Let S = (U,C ∪ D) be a decision table, B ⊆ C and U
′

= U − POS U
B (D). For ∀a, b ∈ C − B, if

S ig2(a, B,D,U) ≥ S ig2(b, B,D,U), then S ig2(a, B,D,U
′
) ≥ S ig2(b, B,D,U

′
).

Proof. Without any of generality, we suppose that POS U
B (D) = {x1, x2, · · · , xp} and U

′
= U − POS U

B (D) =

{xp+1, xp+2, · · · , x|U |}. From the definition of positive region, one has rB
i j ≤ rD

i j when xi ∈ POS U
B (D), ∀ j ≤ n. In

addition, it follows from the definition of similarity matrix that rB
i j = rB

ji and rD
i j = rD

ji . Hence, we have that

HU(D|B) = − 1
|U |
|U |∑
i=1

log
|[xi]R̃B

∩[xi]R̃D
|

|[xi]R̃B
|

= − 1
|U | (

p∑
i=1

log
|[xi]R̃B

∩[xi]R̃D
|

|[xi]R̃B
| +

|U |∑
i=p+1

log
|[xi]R̃B

∩[xi]R̃D
|

|[xi]R̃B
| )

= − 1
|U | (

p∑
i=1

log
|[xi]R̃B

|
|[xi]R̃B

| +
|U |∑

i=p+1
log

|[xi]R̃B
∩[xi]R̃D

|
|[xi]R̃B

| )

= − 1
|U |

|U |∑
i=p+1

log
|[xi]R̃B

∩[xi]R̃D
|

|[xi]R̃B
|

= − |U
′ |
|U |

1
|U′ |

|U′ |∑
i=1

log
|[xi]R̃B

∩[xi]R̃D
|

|[xi]R̃B
|

=
|U′ |
|U | H

U
′
(D|B).

Hence, S ig2(a,B,D,U)
S ig2(a,B,D,U′ ) =

|U′ |
|U | . Therefore, one has that ∀a, b ∈ C − B, if S ig2(a, B,D,U) ≥ S ig2(b, B,D,U), then

S ig2(a, B,D,U
′
) ≥ S ig2(b, B,D,U

′
). This completes the proof.

Theorem 6. Let S = (U,C∪D) be a decision table, B ⊆ C and U
′
= U−{x|µPOS U

B (D)(x) = 1, x ∈ U}. For ∀a, b ∈ C−B,

if S ig3(a, B,D,U) ≥ S ig3(b, B,D,U), then S ig3(a, B,D,U
′
) ≥ S ig3(b, B,D,U

′
).
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Proof. From the definition of µPOS U
B (D)(x), we have that

µPOS U
B∪{a}(D)(x) = 1, ∀x ∈ U,

⇒ ∃X ∈ U/D, s.t., µU
B∪{a}(X)(x) = 1,

⇒ ∃X ∈ U/D, s.t., infx j∈U max{1 − R̃B∪{a}(x, x j), µX(x j)} = 1,

⇒ ∃X ∈ U/D, s.t., infx j∈U max{1 −max{R̃B(x, x j), R̃{a}(x, x j)}, µX(x j)} = 1,

⇒ ∃X ∈ U/D, s.t., ∀x j ∈ U, max{1 −max{R̃B(x, x j), R̃{a}(x, x j)}, µX(x j)} = 1,

⇒ ∃X ∈ U/D, s.t., ∀x j ∈ U, max{1 − R̃B(x, x j)}, µX(x j)} = 1,

⇒ ∃X ∈ U/D, s.t., infx j∈U max{1 − R̃B(x, x j), µX(x j)} = 1,

⇒ ∃X ∈ U/D, s.t., µU
B(X)(x) = 1,

⇒ ∃X ∈ U/D, s.t., µPOS U
B (D)(x) = 1, ∀x ∈ U.

From the definition of S ig3(a, B,D,U) = γB∪{a}(D) − γB(D), we know that

S ig3(a,B,D,U)
S ig3(a,B,D,U′ )

=
γU

B∪{a}(D)−γU
B (D)

γU′
B∪{a}(D)−γU′

B (D)

=
|U′ |
|U |

∑
x∈U µPOS U

B∪{a} (D)(x)−∑x∈U µPOS U
B (D)(x)

∑
x∈U µ

POS U′
B∪{a} (D)

(x)−∑x∈U µ
POS U′

B (D)
(x)

=
|U′ |
|U |

∑
x∈U′ µPOS U

B∪{a} (D)(x)+
∑

x∈U−U′ µPOS U
B∪{a} (D)(x)−∑x∈U′ µPOS U

B (D)(x)−∑x∈U−U′ µPOS U
B (D)(x)

∑
x∈U µ

POS U′
B∪{a} (D)

(x)−∑x∈U µ
POS U′

B (D)
(x)

=
|U′ |
|U |

[
∑

x∈U′ µPOS U
B∪{a} (D)(x)−∑x∈U′ µPOS U

B (D)(x)]+[
∑

x∈U−U′ µPOS U
B∪{a} (D)(x)−∑x∈U−U′ µPOS U

B (D)(x)]
∑

x∈U µ
POS U′

B∪{a} (D)
(x)−∑x∈U µ

POS U′
B (D)

(x)

=
|U′ |
|U |

[
∑

x∈U′ µPOS U
B∪{a} (D)(x)−∑x∈U′ µPOS U

B (D)(x)]+[|U−U
′ |−|U−U

′ |]
∑

x∈U µ
POS U′

B∪{a} (D)
(x)−∑x∈U µ

POS U′
B (D)

(x)

=
|U′ |
|U | .

Because |U′ |
|U | ≥ 0 and if S ig3(a, B,D,U) ≥ S ig3(b, B,D,U), then S ig3(a, B,D,U

′
) ≥ S ig3(b, B,D,U

′
). This

completes the proof.
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