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524 misalignment problem. (c) ForNegative-Label constraints, we
525 delete their uncertain constraints which affects the perfor-
526 mance of the PNLP algorithm.
527 Next, we test the performance of the proposed algo-
528 rithm with multi-source constraints. In the experiment,

529we first randomly select a set of 50%n pairwise con-
530straints (including 50 percent Must-Link and 50 percent
531Cannot-Link) and a set of 50%n label constraints includ-
532ing (50 percent Positive-Label and 50 percent Negative-
533Label) on each data set. Furthermore, we add a certain

Fig. 5. Comparisons of the SC-MPI algorithm with different proportions of noisy constraints.
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534 proportion of incorrect constraints to each of the given
535 sets of pairwise or label constraints. For each data set,
536 we assume the proportion of the incorrect constraints to
537 the number of constraints is 10, 20, 30, 40 and 50 percent,
538 respectively. Given a proportion value, we make use of a
539 set of pairwise or label constraints on a data set to pro-
540 duce 5 different sets of constraints, each of which is
541 made up of the given set of constraints and a set of the
542 randomly produced incorrect constraints. Therefore, for
543 each data set, we produce 10 sets of constraints includ-
544 ing 5 sets of pairwise constraints and 5 sets of label con-
545 straints, according to the fixed proportion of incorrect
546 information. Fig. 5 presents the performance of the pro-
547 posed algorithm with the 10 constraint sets, compared to
548 the best performance of it with each of the pairwise con-
549 straint sets and each of the label constraint sets, in the
550 cases of different sizes of incorrect information. In the
551 figures, ‘SLCS’, ‘SPCS’ and ‘MCS’ denote the highest ARI
552 and NMI values of the proposed algorithm with one of
553 the five label constraint sets, the highest ARI and NMI
554 values of the proposed algorithm with one of the five
555 pairwise constraint sets, and the ARI and NMI values of
556 the proposed algorithm with the 10 constraint sets,
557 respectively. According to the figures, we see that the
558 incorrect information can reduce the clustering effective-
559 ness of the proposed algorithm. As the proportion of the
560 incorrect information increases, the ARI and NMI values
561 of the proposed algorithm decreases. We also observe
562 that the performance of the proposed algorithm with
563 multiple constraint sets are better than it with single con-
564 straint set. The experiment results tell us that the pro-
565 posed algorithm can integrate these constraints to reduce
566 the effect of incorrect information and enhance the
567 robustness of the clustering results.
568 Furthermore, we analyze the effect of the parameter a on
569 the performance of the proposed algorithm on 12 data sets,
570 as shown in Fig. 6. In the analysis, we consider the three
571 cases, i.e., the proposed algorithm with pairwise constraints
572 (including 50 percent Must-Link and 50 percent Cannot-
573 Link), with label constraints (50 percent Positive-Label and

57450 percent Negative-Label) and with mixed constraints
575(50 percent pairwise and 50 percent label constraints). We
576fix the overall number of constraints as 50%n where n is the
577number of objects on a data set. We test the proposed algo-
578rithm with a in the interval [0,2] and the step length of 0.25.
579According to these figures, we observe that the effects of the
580parameter a are different on these data sets. This indicates
581that it is difficult to select an appropriate a for the proposed
582algorithm on each data set. In order to further analyze the
583effect, we show the means of ARI and NMI for the proposed
584algorithm on all the tested data sets for each a in Fig. 6.
585According to the mean lines, we see that if a > 0, the aver-
586age performance of the proposed algorithm is relatively sta-
587ble. Thus, we can see that setting a ¼ 1 is not a bad choice
588and has very good interpretability.

5895 CONCLUSION

590In this paper, we propose a new semi-supervised clustering
591algorithm which can integrate multi-source constraints to
592guide clustering process. In the algorithm, we first present
593an uniform representation for different types of constraints,
594which converts constraints from each source into a pairwise
595relation matrix. Furthermore, we define an objective func-
596tion which includes two terms: evaluating the clustering
597validity and the consensus of all the sources of constraints.
598We provide its optimization solving method to minimize it.
599Extensive experiments demonstrate the proposed algorithm
600is very adaptable for different types of constraints, com-
601pared to other semi-supervised clustering algorithms.
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Fig. 6. Effect of the parameter a on the performance of the proposed algorithm.
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