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Abstract

The k-Nearest Neighbor algorithm(kNN) is an algorithm that is very simple
to understand for classification or regression. It is also a lazy algorithm
that does not use the training data points to do any generalization, in other
words, it keeps all the training data during the testing phase. Thus, the
population size becomes a major concern for kNN, since large population
size may result in slow execution speed and large memory requirements. To
solve this problem, many efforts have been devoted, but mainly focused on
kNN classification. And now we propose an algorithm to decrease the size
of the training set for kNN regression(DISKR). In this algorithm, we firstly
remove the outlier instances that impact the performance of regressor, and
then sorts the left instances by the difference on output among instances and
their nearest neighbors. Finally, the left instances with little contribution
measured by the training error are successively deleted following the rule.
The proposed algorithm is compared with five state-of-the-art algorithms on
19 datasets, and experiment results show it could get the similar prediction
ability but have the lowest instance storage ratio.
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1. Introduction

kNN is a kind of supervised learning method. Supervised learning infers
a function(learner) from a training data T , which is a collection of training
examples called samples [1]. Each sample is a pair including an input vec-
tor(instance) and the desired output value. After learning from the training
set, the learner seeks to correctly determine the output for unseen instances.

In practice, the training set usually contains some noise or redundant
instances, which may affect the performance of the learners on it. Thus, an
increasing number of instance selection algorithms are proposed, and they
aim to remove these superfluous instances from the training data. In gen-
eral, the available instance selection algorithms could fall into two categories:
wrapper algorithms and filter algorithms [2]. The former is a kind of algo-
rithms that select instances based on the accuracy obtained by the learners,
while the latter select the instances only relying on the training data with-
out considering the learners. Obviously, it could be more appropriate to use
wrapper algorithms for a specific learning task. The executing time of learn-
ing algorithms will be reduced after instance selection, but their generation
ability could maintain relatively invariable or even be better. And instance
selection algorithms for kNN are one kind of the wrapper algorithms.

Many developments have been achieved in the research on instance selec-
tion in kNN study. However, it is noteworthy that previous tests were taken
on learning algorithm with the aim of classification [3], instance selection on
regression remains largely understudied. Only border instances needed to
be considered in classification, but not in the case of regression. Because
regression is different from classification, kNN instance selection algorithm
for classification cannot be used in the regression problem.

In this paper, an instance selection algorithm named DISKR is proposed
to reduce training data for kNN regression. This algorithm firstly removes
the outlier instances in the set T at one time and gets the set S, and then
sorts the instances in the set S by defined measure. Following the sorted
order, instances with less contribution to the regressor will be removed one
by one; the contribution of each instance x is measured by the difference
between the training error over S and the one over S−{x}. As the removed
instance affects evaluating the contribution of the left instances, then it needs
to reassess their contribution. However, DISKR only considers the instances
whose k nearest neighbors include the removed instance according to the
locality of kNN. In a word, DISKR provides a simple and effective algorithm
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to distinguish which of the instances have less and negative effect to the
kNN regressor. The proposed algorithm is compared with five state-of-the-
art algorithms, and experimental results show that it could greatly reduce
the size of training data with a similar perdition accuracy.

In total, our method is innovative. Except for reducing noise elimination,
our method mainly tries to remove redundant instances to speed up executing
prediction, where those instances have a little contribution to the regressor.
However, previous algorithms only aim to eliminate noise information. Be-
sides, the threshold in our method is adaptively determined; instead, it is
fixed in advance for traditional threshold-based instance selection methods.

The rest of the paper is organized as follows: Section 2 briefly reviews ex-
isted instance selection algorithms. Section 3 proposes the algorithm DISKR.
Section 4 presents the experiment results on the real data sets. At last, the
conclusion is reached in Section 5.

2. Related work

Instance selection algorithms for regression are divided into two cate-
gories: evolutionary-based and nearest neighbor-based [4].

Tolvi [5] used a genetic algorithm that is an evolutionary based to detect
the outlier in linear regression models. In this method, the corrected BIC
criterion is selected as the fitness function. Each individual is fully described
by a binary vector (z1, z2, · · · , zN), where zi = 0 indicates the instance xi
is not selected as an outlier otherwise it is selected, and i = 1, 2, 3, · · · , N .
The results of this experiment on small datasets have shown that it was not
only able to detect the outlier, but also avoided the potential problem that
one outlier prevents another one from being detected. Antonelli et al. [6]
also proposed an instance selection algorithm in the framework of a multi-
objective evolutionary learning of fuzzy rule-based systems. Different from
the work of Tolvi, this algorithm ran on large-scale datasets and got better
performance. Though the algorithms based evolutionary have better data
reduction percentage and higher prediction accuracy, their computational
costs are about 3 to 4 order of magnitude higher than the ones based on the
neighbor for medium size data sets. Furthermore, the difference in compu-
tational cost becomes larger as the scale of data sets is growing [6]. So these
methods are not easy to apply to the problems in the real life.

There also are substantial nearest neighbor-based instance selection al-
gorithms to reduce the training data and speed up its execution [7]. One of
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the research objects is the kNN. kNN algorithms are divided into two types:
kNN classification and kNN regression.

According to the type of selected instances, the existing instance selec-
tion algorithms for kNN classification are classified into three categories:
condensation algorithms, edition algorithms and hybrid algorithms [3]. Con-
densation algorithms seek to select the instances which are closer to the
classification boundaries, also called border instances. The intuition behind
these algorithms is that the border instances have much more effect on clas-
sification than other instances. Because there are fewer border instances in
most data sets, so they could obtain a normally high reduced ratio. There
are some condensation algorithms, such as CNN [8], MCS [9], POP [10], MSS
[11], and so on. Different from condensation algorithms, edition algorithms
always try to remove noisy instances, where those instances do not agree
with their neighbors. Though the reduction ratio is low, they could improve
the classification accuracy in test instances. These kinds of algorithms in-
cludes ENN [12], Multiedit [13], RNGE [14], MoCS [15], ENRBF [16], and so
on. Finally, hybrid algorithms were proposed, trying to move the related in-
stances combining the two previous strategies above. kNN classifier is highly
adaptable to these algorithms. These algorithms mainly include IB3 [17],
DROP3 [18], ICF [19], HMNEI [20], FCNN[21], NPPS[22] and other scalable
algorithms for large-scale data [23, 24, 25]. Due to the difference between
classification and regression on decision aim and error measure, the instance
selection algorithms for kNN classification cannot be applied on kNN regres-
sion.

kNN regression is an important algorithm with less concern compared
with kNN classification, but there are some studies on this topic. Since there
are some noisy instances in data, and they take the negative effect on the
performance of the regressor. Therefore, these instances should be removed
first before training. For example, Guillen et al. [26] proposed a novel in-
stance selection algorithm with mutual information in time series prediction.
Although this method gets a good performance on artificially generated data,
it needs to be tested on the real data sets. Fde et al. [27] present a class
conditional instance selection for regression (CCISR), and it is an extension
of instance selection for kNN classification. Meanwhile, CCISR has been
tested on 12 real regression problems, showing a good reduction ratio while
keeping the most meaningful examples. However, CCISR has higher compu-
tational time and memory demand, so that it usually exhausts the resources
in practical applications[4]. In fact, a single learning algorithm is difficult
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to achieve a good performance, while ensemble methods with multiple learn-
ing algorithms could obtain the better performance[28]. For this purpose,
Stojanović [4] proposed the fusion of instance selection algorithms for regres-
sion tasks by ensemble idea. Compared with the original instance selection
algorithms, the ensemble algorithms had the best performance on prediction
error and reduced subset size. Totally, the existing methods mainly focus
on noisy instances elimination, rather than the instances with less effect on
the regressor. Because there are fewer noisy instances in most of the data,
the reduction capability of these methods is normally low. Moreover, these
methods do not consider the effect of the removed instances on the regressor,
so their performance will be affected.

3. DISKR

3.1. Preliminary description

kNN regressor is based on learning by comparing the given test instances
with the training set [29]. Let T = {(x1, y1), (x2, y2), · · ·,(xN , yN)} be the
training set with distance metrics d, where xi = (xi1, xi2, · · · , xim) is the ith
instance denoted by m attributes with its output yi, and N is the number of
instances. When given a test instance x, it needs to compute the distance di
between x and each instance xi in T , and sorts the distance di by its value. If
di ranks in the ith place, then the distance di corresponding instance is called
the ith nearest neighbor NNi(x), and its output is noted as yi(x). Finally the
prediction output ŷ of x is the mean of the outputs of its k nearest neighbors

in regression, i.e. , ŷ = 1
k

k∑
i=1

yi(x).

3.2. Instance selection for kNN regression

Our DISKR algorithm is mainly divided into two steps: detecting outlier
instances and removing the indistinctive instances. We will introduce this
algorithm in two steps in this section.

3.2.1. Detecting outliers

In statistical analysis, outlier instances are instances that are somehow
different from the majority of the instances. kNN rule is easily influenced
by the impact of outlier instances, which need to be removed before instance
selection.
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To begin, we should first remove outlier instances before the process above
starts. Similarly, we remove them at one time. Based on the characters of
outlier instances and their effect to the kNN regressor, the instances with
the larger difference on the output with their nearest neighbors used to be
outlier instances. And we define a rule to recognize the outlier instances. If
PD(xi) = |yi − ŷi| > (1 − θ)yi, then the instance xi is an outlier instance,
otherwise it is not, where θ ∈ [0, 1].

3.2.2. Deleting others

Similar as instance selection for classification, the instances with more
contribution to the regressor will be chosen as the representative instances.
The contribution evaluation of each instance plays an important part on
instance selection. However, it is difficult to directly evaluate the effect.
For this reason, we propose an indirect method. If deleting an instance,
the regressor would be influenced, it would be OK. Instance xi affects the
regressor as it is in T , but loses the effect as it is not in T . So the effect of
xi could be estimated by the change of performance of regressor over T and
T −{xi}. The training error is used to approximately estimate the regressor
performance, and it is expressed by the residual sum of squares (RSS).

Let Rbf (xi) and Raf (xi) are the RSS over T − {xi} before and after the
xi is removed respectively, and we have

Rbf (xi) =
∑

xj∈T−{xi}
(yj − ŷj)2

Raf (xi) =
∑

xj∈T−{xi}
(yj − ŷ′j)2

(3.1)

where ŷj and ŷ′j are the predicted output of the regressor built on T and
T − {xi}, and the effect of xi on the regressor is represented by ∇(xi) =
Raf (xi)−Rbf (xi).

Different from other methods, kNN is a local learning algorithm. The
output of the test instance is only related to its k nearest neighbors. In order
to describe better, we define a new concept center.

Definition 1. If an instance xi is one of the k nearest neighbors of xj,
then xj is called the Center of xi, noted as Cen(xi). And Λ(xi) = {xi ∈
NN(xj)|xj ∈ T} , is the Influential-All-Center of xi,where NN(xj) is
the set including all k nearest neighbors of xj.
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Λc(xi), is the complementary set of Λ(xi) where Λc(xi) = {xj ∈ T − {xi} :
xj /∈ Λ(xi)}. So ∇(xi) can be reformulated as follows:

∇(xi) = Raf (xi)−Rbf (xi)

=
∑

xj∈T−{xi}
(yj − ŷ′j)2 − ∑

xj∈T−{xi}
(yj − ŷj)2

= { ∑
xj∈Λ(xi)

(yj − ŷ′j)2 +
∑

xj∈Λc(xi)

(yj − ŷ′j)2}

− { ∑
xj∈Λ(xi)

(yj − ŷj)2 +
∑

xj∈Λc(xi)

(yj − ŷj)2}

=
∑

xj∈Λ(xi)

{(yj − ŷ′j)2 − (yj − ŷj)2}.

(3.2)

where
∑

xj∈Λc(xi)

(yj − ŷj)2 =
∑

xj∈Λc(xi)

(yj − ŷ′j)2, because k nearest neighbors of

the instances in set Λc(xi) remain the same regardless of the xi is in or out of
T . Then the computation of ∇(xi) is simplified, and its value shows xi has
positive or negative on the regressor. If ∇(xi) ≤ 0, then xi is likely to play
the positive effect on prediction; otherwise xi is likely to take the negative
effect as ∇(xi) > 0.

If an instance xi had been deleted, each element xj in set Λ(xi) has
to find its k + 1th nearest neighbor NNk+1(xj) to replace xi in its nearest
neighbor list, xi = NN1(xj), for keeping the generality. Then the instance
NNk+1(xj) and the remainder nearest neighbor instances NN2(xj), NN3(xj),
· · ·, NNk(xj) reconstitute its new k nearest neighbor list, that is, NN2(xj),
NN3(xj), · · ·, NNk(xj), NNk+1(xj). According to the kNN regression hy-
pothesis, the farther distance between the instance xj and its k nearest neigh-
bors, the larger difference on their outputs. After this process, the difference
between yj and ŷ′j could be larger than the difference between yj and ŷj, and
this issue usually is true in real life. Thus ∇(xi) may take positive value,
and the performance of the regressor will have various degrees of weakness
in most cases.

After an instance xi being removed, we adopt the following rule to avoid
the significant negative change on the performance of regressor, that is

∇(xi) ≤ θRbf (xi) (3.3)

where θ ∈ (0, 1) is the significant coefficient and it is the same parameter
θ in the section 3.2.1. Obviously, the larger the θ, the more the removed
instances, and vice versa.
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The way that the instances are removed from T plays an important role
in instance selection. It is idealistic to remove all the instances meeting
the removing rule from T at one time. However, this way may cause the
negative change on the performance of a regressor dramatically, because a
large number of instances may be removed all at once. Besides, there are
some mutual center instances and all of them meet the removing rule. If we
remove those instances, others would be influenced. In order to avoid the
above problem, we remove the instances according to the removing rule one
by one.

Algorithm 1: Decremental instance selection for kNN regres-
sion(DISKR)

Input : Dataset T = (x1, y2), (x1, y2), · · · , (xN , yN), the parameter θ,
the number of nearest neighbor k.

Output: The subset S ⊆ T .

1 Removei = 0, i = 1, 2, · · · , N ,S = ∅;
foreach xi ∈ T do

2 Computer PD(xi);
if PD(xi) > (1− θ)yi then

3 Removei = 1
end

end
4 S = {xi ∈ T : Removei = 0}
5 Sort the instance xi in S according to PD(xi) in decreasing order and

obtain the set S ′;
foreach xi ∈ S ′ do

6 Compute Rbf (xi) and Raf (xi);
if ∇(xi) ≤ θRaf (xi) then

7 S = S − {xi};
foreach xj ∈ Λ(xi) do

8 Find another instance xl to replace xj in NN(xj) ;
9 Λ(xl) = Λ(xl) ∪ {xj};

end

end

end
10 Return S
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Moreover, the sequence of removing instances depends on an order, and
different orders have different effects on the regressor. Therefore, we sort
instances xi by the absolute difference PD(xi) = |yi− ŷi| in descending order,
where ŷi is the predicted output of xi supported by its k nearest neighbors.
The instance xi with greater PD(xi) has a large divergence with its majority
nearest neighbors, and there is a greater possibility that such instance has
a negative impact on prediction. So these instances should be firstly tested
whether they are removed or not.

Based on above content, we propose an instance selection for kNN regres-
sion, and its detail is listed in algorithm 1.

3.2.3. The determination of θ

The determination of θ value is of importance for our algorithm. Too
large a value of θ results in too many instances being selected. Consequently,
we will achieve a little effect of instance selection. Too small a value of θ, on
the other hand, leads to a large number of instances selected. The dilemma
about θ will not be symmetrical, because a serious loss of predictive accuracy
of the kNN regressor is not likely to be well compensated for by a benefit of
the down-sized training set.

Fixing the value of θ for every dataset is difficult, as it depends on the
specific features of each problem. Therefore, we use a cross-validation ap-
proach. We divide the training set into two parts, using one of them for
performing DISKR algorithm, and the other one for obtaining the validation
error. Given the value of θ from small to large, the optimal θ is obtained as
the last θ before the validation error starts to grow. Then, we perform the al-
gorithm using the whole training set for the θ obtained in the cross-validation
process.

4. Experimental analysis

4.1. Experiment setup

To make a fair comparison between our algorithm and others, we ran-
domly select 19 datasets with instances larger than 1000 from the KEEL
Repository[30], where this repository is a set of benchmarks to analyze the
performance of the machine learning algorithms. These datasets are de-
scribed in Table 1.
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Table 1 Summary of 19 small datasets
Dataset Abbreviation Features Size
Abalone ABA 8 4177

Airfoil Self-Noise AIR 6 1503
ANACALT ANA 7 4052
California CAL 8 20640

CASP CAS 9 45730
CCPP CCP 4 9568

Compaic COM 21 8192
Concrete CON 8 1030

Ele2 ELE 4 1056
Friedman FRI 5 1200

House HOU 16 22784
Mortgage MOR 15 1049

plastic PLA 2 1650
Pole POL 26 14998

Quake QUA 3 2178
Tic TIC 85 9822

Treasury TRE 15 1049
Wankara WAN 9 1609
Wizmir WIZ 9 1461

In order to compare the performance between DISKR and other in-
stance selection algorithms, five representative algorithms for kNN regres-
sion have been selected in this study: prototype selection using mutual
information(PSMI), ensemble of threshold-based CNN(TE-CNN), ensemble
of threshold-based ENN (TE-ENN), ensemble of discretization-based CNN
(DE-CNN) and ensemble of discretization-based ENN (DE-ENN). The selec-
tion of instance selection algorithms is based on their representativeness and
popularity. Besides, CCISR is one of the typical instance selection algorithms
for kNN regression, but it is out of our resources for very high computational
time and memory demand for larger datasets.

The evaluation of instance selection is a key task, and they can be dis-
tinguished into two basic forms: direct and indirect evaluation. Direct eval-
uation aims to measure at which extent the selected instances reflect the in-
formation present in the original data. The indirect evaluation measures the
performance of the learners trained on the reduced set. Generally speaking,
the indirect evaluation is often used to evaluate instance selection algorithms
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for instance-based learning algorithms. The coefficient of determination (R2)
and the instances compression ratio (C) are two most common metrics for
the indirect evaluation. The former metric evaluates the squared correla-
tion between the predicted and the actual value, the greater R2, the higher
prediction accuracy; the latter is the percentage of instances left, lower com-
pression ration means a stronger reduction. 10-fold cross-validation method
is used to estimate the value of these two. In this method, the data set we
use is divided into 10 subsets of approximately equal size. Then the proposed
method is performed 10 times, each one subset as a test set, and the remain-
ing 9 subsets as a training set. The final result is the average of results on
all the test sets.

The Wilcoxon signed rank test is used to assess the performance between
DISKR and other algorithms. In this test, the null hypothesis is that there
is no significant difference between DISKR and each of the other methods,
against the alternative that there is a significant difference. In all of the
following experiments, k = 9, θ from 0.05 to 1 in steps of 0.05 and the
significance level α = 0.05. The reason for choosing k = 9 is that the optimal
k in the kNN algorithm is about 9 on most datasets due to the conclusion
in[31].

4.2. DISKR behaviors

In this section, we will compare the performance of DISKR algorithm
with others by the coefficient of determination R2 and compression ratio C.

4.2.1. The coefficient of determination

The coefficient of determination R2 is an important index to evaluate the
prediction performance of the regressor, and it is independent of the data
standardization. When the value of R2 is closer to 1, the generalization
ability of the regressor will be much better.

Table 2 lists the coefficients of determination R2 of these 6 algorithms on
19 different datasets. Besides, some statistics are calculated over all data sets
for each algorithm are listed in the last three rows of Table 2. Meanwhile,
the trends of R2 for these 6 algorithms on different data sets are also plotted
on the Fig.1.

11



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 2 R2 of 6 algorithms on 19 different datasets
Dataset DISKR TE-CNN TE-ENN DE-CNN DE-ENN PSMI

ABA 0.692 0.739 0.712 0.635 0.739 0.721
AIR 0.477 0.482 0.496 0.462 0.469 0.428
ANA 0.992 0.992 0.992 0.940 0.993 0.991
CAL 0.501 0.561 0.555 0.474 0.563 0.550
CAS 0.913 0.921 0.920 0.919 0.921 0.912
CCP 0.970 0.975 0.963 0.973 0.975 0.974
COM 0.921 0.941 0.940 0.937 0.935 0.940
CON 0.797 0.855 0.762 0.862 0.732 0.845
ELE 0.997 0.996 0.996 0.997 0.996 0.997
FRI 0.940 0.953 0.943 0.944 0.952 0.942
HOU 0.307 0.314 0.364 0.315 0.301 0.300
MOR 0.998 0.996 0.959 0.996 0.983 0.991
PLA 0.859 0.874 0.845 0.861 0.879 0.855
POL 0.937 0.921 0.856 0.880 0.912 0.911
QUA 0.171 0.122 0.138 0.178 0.169 0.087
TIC 0.196 0.195 0.190 0.115 0.115 0.179
TRE 0.985 0.994 0.952 0.992 0.984 0.987
WAN 0.993 0.990 0.988 0.991 0.989 0.990
WIZ 0.996 0.994 0.996 0.996 0.996 0.996

Average 0.771 0.780 0.767 0.761 0.769 0.768
Median 0.921 0.921 0.920 0.919 0.921 0.912

Wilcixon P 0.0766 0.6292 0.7172 0.9039 0.7782

Fig.1 indicates that the values of R2 of DISKER and another five algo-
rithms show different change trends on these datasets. To be specific, the
value of R2 obtained by DISKER has similar or larger value than other five
algorithms on the dataset ANA, CAS, CCP, ELE, FRI, PLA, POL, QUA,
TIC, TRE, WAN, WIZ, and DISKER does not has the minimum value of
R2 on the remaining 7 datasets. Therefore, DISKER is not worse than these
five algorithms about the index R2 over these 19 datasets. Meanwhile, two
simple statistics sample mean and median over these datasets also indicate
this issue. The average value of R2 on all the data sets of these 6 algorithms
are 0.771, 0.780, 0.767, 0.761, 0.769 and 0.768, and their median values are
0.921, 0.921, 0.920, 0.919, 0.921 and 0.912. From above, the differences of R2

among them are relatively small. In order to assess the overall performance
on R2 basing on the statistical analysis, the Wilcoxon signed rank test is used
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Figure 1: The R2 of different algorithms on different datasets

to perform a paired, two-sided signed rank test between DISKER and each
one of the these five algorithms. The p-value of R2 between our DISKER
and the other five algorithms are 0.0766, 0.6292, 0.7172, 0.9039 and 0.7782
respectively, and all of them are smaller than the given significant level 0.05.
So it does not exist significant difference on R2 between DISKR and each
representative algorithm under given significant level 0.05.

4.2.2. The compression ration

The size of reduced subset is another key point that we mainly concern.
When it comes to the storage, a low compression ratio means that it keeps less
training instances, and consequently has a higher running speed. The results
of compression ratio of these 6 instance selection algorithms on different data
sets are shown in Table 3, and related statistic analysis is also listed in the
last three rows of Table 3. At the same time, the tendency on the compression
ration of different algorithms on different data sets are plotted on Fig.2.
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Table 3 The storage ration of 6 algorithms on 19 different datasets
Dataset DISKR TE-CNN TE-ENN DE-CNN DE-ENN PSMI

ABA 0.170 0.887 0.694 0.449 0.961 0.679
AIR 0.186 0.496 0.394 0.991 0.223 0.685
ANA 0.123 0.922 0.258 0.077 0.945 0.355
CAL 0.325 0.738 0.660 0.073 0.993 0.700
CAS 0.223 0.781 0.795 0.791 0.875 0.742
CCP 0.314 0.973 0.218 0.744 0.926 0.701
COM 0.133 0.617 0.206 0.630 0.853 0.733
CON 0.452 0.757 0.714 0.999 0.412 0.828
ELE 0.549 0.705 0.889 0.216 0.992 0.834
FRI 0.457 0.836 0.847 0.595 0.995 0.624
HOU 0.137 0.425 0.470 0.365 0.385 0.623
MOR 0.735 0.997 0.818 0.753 0.859 0.729
PLA 0.204 0.281 0.158 0.532 0.807 0.812
POL 0.275 0.881 0.536 0.451 0.844 0.674
QUA 0.109 0.762 0.231 0.983 0.254 0.741
TIC 0.181 0.581 0.597 0.361 0.346 0.741
TRE 0.652 0.972 0.224 0.507 0.916 0.743
WAN 0.505 0.635 0.925 0.724 0.826 0.614
WIZ 0.462 0.999 0.900 0.719 0.908 0.683

Average 0.326 0.750 0.555 0.577 0.754 0.697
Median 0.275 0.762 0.597 0.595 0.859 0.701

Wilcixon P 1.32E-04 0.0029 0.007 1.82E-04 1.55E-04

From the Fig.2, we find that these instance selection algorithms have dif-
ferent storage ratio, and each algorithm has different storage ratio on different
datasets. DISKR has the lowest storage ratio than other algorithms on these
11 datasets ABA, AIR, CAS, COM, FRI, HOU, POL, QUA, TIC, WAN,
WIZ, and it is second-lowest storage ratio on the rest 8 datasets. According
to the statistical results of Table 3, the average value of the storage ratio of
these algorithms on all the data sets are 0.326, 0.750, 0.555, 0.577, 0.574 and
0.697, and their median value are 0.275, 0.762, 0.597, 0.595, 0.859 and 0.701.
So DISKR has the lowest storage ratio in the term of the whole state. Fur-
thermore, the p-value of Wilcoxon signed rank test between DISKR and each
representative algorithm are 1.32E-04, 0.0029, 0.007, 1.82E-04 and 1.55E-04,
they are all smaller than the given significant level 0.05. That means that
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Figure 2: C obtained by different algorithms on different datasets

DISKR has the highest reduction ratio comparing with five selected algo-
rithms. The reason for this phenomenon is that there are less number of
noisy instances in most real datasets, and these five methods seek to elimi-
nate noisy instances. While DISKR not only remove noisy instances, but the
instance with less contribution to the regressor are also removed.

4.3. The effect of θ

θ controls the extent of the rule of removing instances. If θ takes smaller
value, there may be many instances satisfying the rule of removing instances.
Meanwhile, the less number of instances will be finally saved, and the genera-
tion ability of obtained instance subset will decrease. To this end, we change
θ from 0.05 to 1 in the steps of 0.05 to perform DISKR and their results are
plotted on Fig.3.

Fig. 3 presents R2 and C obtained with DISKR over TIC dataset. The
vertical axis shows R2 and C in Fig.3 (a) and (b), and the horizontal axis
shows the value of θ varying from 0.05 to 1 in the steps of 0.05. They could
obviously show that the values of R2 and C decrease as enlarging θ in whole,
though their values increase as θ with small value. However, the optimal
value of θ should be carefully chosen to get the tradeoff between R2 and C.
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Figure 3: R2 and C on different datasets

4.4. The effect of order

Different orders of removing instances could obtain different instance sub-
sets, and the size and performance of these subsets are also different. We
have stated that our defined order(DW) is fit for instance selection for kNN
regression. However, this statement must be corroborated. In order to test
the performance of DW, we choose another two different orders: random way
(RW) and the way that sorts instance xi by increasing PD(xi)(IW). Their
performance is shown in the Fig.4 and 5 using R2 and C.

Compared with IW and RW, DW obtains the higher or similar value of
R2 on the most of the datasets except HOU dataset in Fig.4. Meanwhile, the
p-value of Wilcoxon signed rank test between DW and each one of two other
ways are 0.0158 and 0.0269, they are both smaller than the given significant
level 0.05. So DW could get the better predictive ability than IW and RW.
For data reduction, the value of C obtained by DW is not larger than two
other ways on the most datasets except CAL, WAN, WIZ in Fig.5. And
the p-value of Wilcoxon signed rank test between DW and two other ways
are 0.2432 and 0.8092, they are both larger than the given significant level
0.05. Then DW gets no significant difference on data reduction with IW and
RW. According to the above discussion, we can get the conclusion that DW
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Figure 5: C obtained by three different ways
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obtains the highest predictive ability with the similar data reduction ratio.

5. Conclusion

Most of the instance selection algorithms are mainly concerned with kNN
classification, and less focused on kNN regression. In this paper, we propose
an efficient instance selection algorithm DISKR for kNN regression. Firstly,
the proposed algorithm removes the outlier instances. Secondly, it sorts
the left instances by the difference between their true and predicted output
provided by their neighbors. Finally, DISKER removes the instances with less
effect on the regressor one by one. Experiments show that DISKR has a more
consistent performance in comparison with the five state-of-the-art instance
selection algorithms, but with a lower storage ratio. Thus, our method can
reduce storage space, and it provides a potential method when dealing with
large-scale data. In the future work, we will add the divide-and-conquer
strategy to accelerate DISKER’s performance for the big data.
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