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a b s t r a c t 

Ensemble clustering has been attracting increasing attention in recent years, because it is 

able to combine multiple base clusterings (ensemble members) into a more robust clus- 

tering. It mainly consists of two parts, generating multiple ensemble members and finding 

a final partition. The construction of the information matrix plays an important role for 

finding a final partition. In general categorical data ensemble clustering framework, most 

existing information matrices are constructed only relying on label information of ensem- 

ble members without considering original information of data sets. To solve this problem, 

a new ensemble clustering framework for categorical data is proposed, in which the infor- 

mation matrix considers label information and original data information together, and is 

instantiated into the ALM matrix in this paper. The ALM matrix takes account of not only 

the distribution of attribute content in each ensemble member, but also the relationship 

among ensemble members based on the distribution. To simplicity, the k -means technique 

is used to cluster the ALM matrix and form a new ensemble clustering algorithm. The ex- 

perimental results have shown the benefits of the ALM matrix by comparing the proposed 

algorithm with other ensemble clustering algorithms. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

Clustering analysis as an unsupervised learning method has been widely used in many real fields [1] . It aims to partition

a given data set into a certain number of homogeneous groups, i.e, clusters. Many typical algorithms such as k -means [2] ,

DBSCAN [3] have been proposed to cluster numerical data [4–6] . For categorical data, these algorithms can not be applied

to cluster them directly because their attribute values are discrete and unorder. 

To cluster categorical data, some algorithms have been proposed such as k -modes type algorithms [7–13] , ROCK [14] and

COOLCAT [15] . However, in most cases each categorical data clustering algorithm only can be applied to discover a kind

of data structure and not performs best for all data. For a given categorical data set, different algorithms may produce

different clustering results. Even though the same algorithm is used, results may also have a difference because of different

parameters. Therefore, it is very difficult to find the most suitable clustering algorithm for a given categorical data set. 
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Ensemble clustering has emerged as a powerful tool to discover the groups of a given categorical data set [16–19] . Com-

pared with a single algorithm, ensemble clustering has better robustness, because multiple clusterings are combined to find

a final partition. The multiple clusterings combined are referred as a set of base clusterings and each base clustering is also

called as an ensemble member. Apparently, ensemble clustering consists of two parts, generating multiple ensemble mem-

bers and finding a final partition. In the second part, the information matrix plays an important role, so its construction is of

profound significance in ensemble clustering. The information matrix that describes the relationships between objects and

clusters is the most widely used, because it is more simple and intuitive, and can be clustered by more kinds of algorithms.

Despite notable success of this kind of information matrix has been achieved in ensemble clustering, original information

of data set has not been considered in general ensemble clustering framework. Most existing information matrices consider

only label information of ensemble members. That is to say, after obtaining the set of base clusterings, the information ma-

trix can be directly or indirectly obtained according to label information of ensemble members. That means the construction

of the matrix only relies on the set of base clusterings. It is likely to find a final partition by the information matrix that is

inconsistent with the original data structure. 

To solve this problem, we propose a new ensemble clustering framework for categorical data, in which the information

matrix is improved by considering original data information and label information together, and is instantiated into the ALM

matrix. For clarity, we summarize the main contributions of this paper as follows. 

• We propose a new ensemble clustering framework for categorical data, in which original data information and label in-

formation are combined to construct the information matrix. For the new framework, different methods can be proposed

to combine original data information and label information, the set of base clusterings can be generated by different

methods, and the information matrix can be clustered by different algorithms. The new framework can be instantiated

into many ensemble clustering algorithms according to different requirements. 
• We construct a new matrix ALM by instantiating information matrix of the new framework. The ALM matrix is con-

structed by combining attribute content and label information, considering not only the distribution of attribute content

in each ensemble member, but also the relationship among ensemble members based on the distribution. 

The rest of this paper is organized as follows. Related work is reviewed in Section 2 . A new ensemble clustering frame-

work for categorical data is proposed in Section 3 . The ALM matrix is instantiated in Section 4 . Experimental results on real

data sets are reported in Section 5 . The paper is concluded in Section 6 . 

2. Related work 

Many methods have been proposed to construct an information matrix. To our best knowledge, there are three main

types. The first kind is constructed as the relationships between objects and ensemble members. Each object is described

by a vector formed by its labels in each ensemble members. The label-assignment matrix (LM) [20] is the most typical case.

This type of matrix is generally dealt with to find a final partition by two ways. One is to cluster it by some categorical

clustering algorithms. Another is to relabel objects that allows the homogeneous labels to be established from heterogeneous

clustering results. 

The second kind is constructed as the relationships between objects and objects. The pairwise similarity matrix (PM)

[21] is the most typical case. It records co-occurrence statistics among objects in ensemble members. For objects that are not

in the same cluster in all ensemble members, their similarities are not represented well. Therefore, Connected-Triple based

similarity (CTS) matrix and SimRank based similarity (SRS) matrix are constructed to solve this problem [22] . Although the

accuracy of the final partition has been improved, the two matrices are highly expensive to obtain [20] and the technique

computing the similarities between objects, SimRank [23] , is inapplicable to large data sets. For this type of matrix, some

similarity-based algorithms (e.g., hierarchical clustering) can be used to find a final partition [24,25] . 

The third kind is constructed as the relationships between objects and clusters. The most typical case is the binary

cluster-association matrix (BM) [26] . It records memberships of objects in clusters. If an object belongs to a cluster, the

corresponding value is written as 1. Otherwise, it is written as 0. In this matrix, many potential relationships have not been

discovered. So a link-based similarity algorithm was proposed, by which the relationships between objects and clusters that

objects not belongs to are discovered and the refined cluster-association matrix (RM) is constructed [20] . This type of matrix

can be clustered by traditional numeric and categorical algorithms, also can be processed by graph clustering algorithms like

METIS [27] and SPEC [28] . 

Among the three main types, the third is the most widely used. Despite notable success of existing information matrices

has been achieved in ensemble clustering, the original data information has not been considered in general ensemble clus-

tering framework. Most existing information matrices only consider label information of ensemble members that makes the

final partition sensitive to ensemble members. An example is listed to show the difficulties encountered by the existing in-

formation matrices. Suppose that X = { x 1 , x 2 , x 3 , x 4 , x 5 , x 6 } is a categorical data set, it is described by three attributes { A 1 , A 2 ,

A 3 }, as Table 1 . The data set X can be clustered to generate a set of base clusterings � = { π1 , π2 , π3 } , where π1 = { c 1 
1 
, c 1 

2 
} ,

π2 = { c 2 1 , c 
2 
2 , c 

2 
3 } , and π3 = { c 3 

1 
, c 3 

2 
} , consisting of 2, 3, 2 clusters respectively. The distribution of objects in each cluster is

shown in Table 2 . According to the set of base clusterings �, the information matrices BM and RM can be obtained in

Tables 3 and 4 , without considering the information of original data set X . 
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Table 1 

The data X . 

objects A 1 A 2 A 3 

x 1 B E H 

x 2 C E N 

x 3 C E H 

x 4 B E N 

x 5 D E N 

x 6 C E P 

Table 2 

A set of base clusterings of X . 

members clusters objects 

π 1 c 1 1 { x 1 , x 4 } 

c 1 2 { x 2 , x 3 , x 5 , x 6 } 

π 2 c 2 1 { x 1 , x 4 } 

c 2 2 { x 2 , x 3 , x 6 } 

c 2 3 { x 5 } 

π 3 c 3 1 { x 1 , x 3 } 

c 3 2 { x 2 , x 4 , x 5 , x 6 } 

Table 3 

The BM. 

c 1 1 c 1 2 c 2 1 c 2 2 c 2 3 c 3 1 c 3 2 

x 1 1 0 1 0 0 1 0 

x 2 0 1 0 1 0 0 1 

x 3 0 1 0 1 0 1 0 

x 4 1 0 1 0 0 0 1 

x 5 0 1 0 0 1 0 1 

x 6 0 1 0 1 0 0 1 

Table 4 

The RM. 

c 1 1 c 1 2 c 2 1 c 2 2 c 2 3 c 3 1 c 3 2 

x 1 1.00 0.49 1.00 0.49 0.20 1.00 0.85 

x 2 0.49 1.00 0.49 1.00 0.38 0.85 1.00 

x 3 0.49 1.00 0.49 1.00 0.38 1.00 0.85 

x 4 1.00 0.49 1.00 0.49 0.20 0.85 1.00 

x 5 0.49 1.00 0.20 0.38 1.00 0.85 1.00 

x 6 0.49 1.00 0.49 1.00 0.38 0.85 1.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The information matrices are generally clustered to find a final partition, in which each column is taken as a feature.

Therefore, it is supposed that the distance between two objects in the information matrix is as close as possible to their

distance in the original data. We use �( x i , x j ) to represent Euclidean distance between x i and x j . It is shown that the distance

between x 2 and x 6 is computed as �(x 2 , x 6 ) = 0 in the BM and RM. However, in Table 1 , x 2 = (C, E, N) , x 6 = (C, E, P ) . Appar-

ently, they are two different vectors, so their distance should not be 0. Again, in Table 1 , x 5 = (D, E, N) , x 4 = (B, E, N) , x 3 =
(C, E, H) . Obviously, x 5 is more similar to x 4 compared with x 3 . But �(x 5 , x 4 ) = �(x 5 , x 3 ) in the BM, and �( x 5 , x 4 ) > �( x 5 ,

x 3 ) in the RM. They don’t match the facts. Above all, the distances between objects in the BM and RM may be inconsis-

tent with their distance in the original data because the information matrices only consider label information of ensemble

members. In this paper, we propose a new ensemble clustering framework, in which original data information is added to

improve the information matrix, and the matrix is instantiated into the ALM matrix. 

3. A new ensemble clustering framework for categorical data 

Different with numeric data, attribute values of categorical data are discrete and unorder. For a given categorical data

set, its a general description is illustrated as follows. Suppose that X = { x 1 , x 2 , . . . , x n } is a set of n objects described by m

categorical attributes { A 1 , A 2 , . . . , A m 

} , where x i = (x i 1 , x i 2 , . . . , x im 

) and x is denotes the attribute value of x i on A s . Suppose

that V 

s represents the domain values of X on the attribute A s . Obviously, 
n ⋃ 

i =1 

x is = V s . And for ∀ x ps , x qs ∈ V 

s , x ps = x qs or

x ps � = x qs . 

A new ensemble clustering framework for categorical data set is proposed, as shown in Fig. 1 . Given a categorical data

set X , it can be clustered to generate a set of base clusterings � = { π1 , π2 , . . . , πM 

} , where π j = { C j 
1 
, C 

j 
2 
, . . . , C 

j 

k j 
} (1 ≤ j ≤ M)
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Fig. 1. The new ensemble clustering framework for categorical data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

denotes the j th base clustering or ensemble member, and k j represents the number of clusters in the j th ensemble member.

Then, the information matrix is constructed by combining the original data set X and the set of base clusterings �, in

which original data information and label information of ensemble members are considered together. The final partition π ∗

is found by clustering the information matrix. 

In the new ensemble clustering framework, original data information is added to construct the information matrix, which

has not been considered in general ensemble clustering framework (see dotted line in Fig. 1 ). For the new framework, dif-

ferent methods can be proposed to combine original data information and label information of ensemble members, different

methods can be used to generate a set of base clusterings [7,29,30] , and the information matrix can be clustered by different

algorithms [2,4] . The new framework can be instantiated into many ensemble clustering algorithms according to different

requirements. In this paper, we propose a method to combine original data information and label information of ensemble

members, and the information matrix is instantiated into the ALM matrix. 

4. The construction of the ALM matrix 

To find a better final partition, the information matrix is supposed to consider the distribution of each ensemble member

and the relationships among ensemble members together. For the ALM matrix, the attribute content is used in the two

process to achieve the adding of original data information. The ALM matrix describes the similarities between objects and

clusters. For a given object x i ( x i ∈ X ) and a cluster C 
j 

t (1 ≤ j ≤ M, 1 ≤ t ≤ k j ) , we call the ensemble member π j (C 
j 

t ∈ π j )

as the current ensemble member. In the member π j , the similarity between x i and C 
j 

t is not only decided by C 
j 

t but also

related to the relationship between x i and C 
j 
u (C 

j 
u ∈ π j , C 

j 
u � = C 

j 
t ) . Furthermore, in each ensemble member π r (1 ≤ r ≤ M ), x i 

can be allocated to a cluster C r u (1 ≤ u ≤ k r ) . The relationship between C r u (x i ∈ C r u , 1 ≤ r ≤ M, 1 ≤ u ≤ k r ) and C 
j 

t also affect the

similarity between x i and C 
j 

t . Therefore, the similarity can be obtained based on two parts: the current ensemble member

(the current-member-based similarity) and all ensemble members (the all-members-based similarity). 

4.1. The current-member-based similarity 

To consider the information of original data set, for a given object, the importance of its attribute values in a cluster

can be used to describe the current-member-based similarity between it and the cluster. The more important its attribute

values are in a cluster, the higher the similarity between it and the cluster is. Therefore, the current-member-based similarity

between an object and a cluster can be defined as follows. 

Definition 1. Suppose that X is a data set described by m categorical attributes, it can be clustered to generate a set of base

clusterings � = { π1 , π2 , . . . , πM 

} , where π j = { C j 
1 
, C 

j 
2 
, . . . , C 

j 

k j 
} (1 ≤ j ≤ M ). ∀ x i ∈ X , the current-member-based similarity

between x i and C 
j 

t can be defined as 

cur _ sim (x i , C 
j 

t ) = 

1 

m 

m ∑ 

s =1 

ω(x is | C j t ) , (1) 

where t ∈ { 1 , 2 , . . . , k j } and ω(x is | C j t ) represents the importance of x is in C 
j 

t . 

How to obtain the importance of attribute values in a cluster. In a given ensemble member, if an attribute value has

higher frequency in a cluster and has lower frequency in the other clusters in the ensemble member, the attribute value is

very important to the cluster [31] . Based on this insight, the importance of attribute values in clusters is defined as follows.

Definition 2. Suppose that X is a data set described by m categorical attributes, it can be clustered to generate a set of base

clusterings � = { π1 , π2 , . . . , πM 

} , where π j = { C j 
1 
, C 

j 
2 
, . . . , C 

j 

k j 
} (1 ≤ j ≤ M ). ∀ v ∈ V 

s , the importance of the attribute value v
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in C 
j 

t (t ∈ { 1 , 2 , . . . , k j } ) can be defined as 

ω(v | C j t ) = 

∑ 

∀ x l ∈ C j t 
δ(v , x ls ) 

| C j t | 
× f π j 

(v ) , (2)

where 

δ(x, y ) = 

{
1 , i f x == y, 
0 , otherwise, 

and | C j t | represents the number of objects in the cluster C 
j 

t . f π j 
(v ) represents the measurement of uncertainty of v in all

clusters for π j , and the formula is given as follows. 

f π j 
(v ) = 1 − −1 

log k j 
×

k j ∑ 

t=1 

p(v | C j t ) log (p(v | C j t )) , (3)

where 

p(v | C j t ) = 

∑ 

∀ x l ∈ C j t 
δ(v , x ls ) ∑ k j 

t=1 

∑ 

∀ x l ∈ C j t 
δ(v , x ls ) 

. (4)

Obviously, 
∑ 

∀ x l ∈ C j t 

δ(v , x ls ) in Eq. (2) is the number of the attribute value v in the cluster C 
j 

t . Therefore,

1 

| C j t | 
∑ 

∀ x l ∈ C j t 

δ(v , x ls ) denotes the frequency of the attribute value v in the cluster C 
j 

t . If the frequency is higher, the attribute

value v becomes more important in the cluster C 
j 

t . Moreover, 
∑ k j 

t=1 

∑ 

∀ x l ∈ C j t 

δ(v , x ls ) in Eq. (4) denotes the number of the

attribute value v in all clusters of π j . So the entropy − ∑ k j 
t=1 

p(v | C j t ) log (p(v | C j t )) in Eq. (3) is the probability distribution of

v in all clusters of π j . The bigger the entropy is, the closer the probability distribution of v in each cluster is. If the entropy

is smaller and the frequency of v in C 
j 

t is higher, the frequency of v in the other clusters C 
j 
u (C 

j 
u ∈ π j , C 

j 
u � = C 

j 
t ) is smaller. That

is, the attribute value v is very important to the given cluster C 
j 

t . As the range of the entropy is in [0, log k j ], we add a

normalization factor 1 
log k j 

in Eq. (3) . 

4.2. The all-members-based similarity 

Given an object x i ∈ X , in each ensemble member π r (1 ≤ r ≤ M ), it can be allocated to a cluster C r u (1 ≤ u ≤ k r ) . When

we compute the similarity between x i and a given cluster C 
j 

t , if the distribution of C r u (x i ∈ C r u , 1 ≤ r ≤ M, 1 ≤ u ≤ k r ) and C 
j

t 

is very similar, the similarity between x i and C 
j 

t also becomes higher. Therefore, the similarity between C r u (x i ∈ C r u , 1 ≤ r ≤
M, 1 ≤ u ≤ k r ) and C 

j 
t is used to represent the all-members-based similarity between the object x i and the cluster C 

j 
t , which

is defined as follows. 

Definition 3. Suppose that X is a data set described by m categorical attributes, it can be clustered to generate a set of

base clusterings � = { π1 , π2 , . . . , πM 

} , where π j = { C j 
1 
, C 

j 
2 
, . . . , C 

j 

k j 
} (1 ≤ j ≤ M ). ∀ x i ∈ X , the all-members-based similarity

between x i and C 
j 

t can be defined as 

al l _ sim (x i , C 
j 

t ) = 

1 

M 

M ∑ 

r=1 

s (C r (x i ) , C 
j 

t ) , (5)

where t ∈ { 1 , 2 , . . . , k j } . C r ( x i ) denotes the cluster that x i belongs to in π r . s (C r (x i ) , C 
j 

t ) denotes the similarity between C r ( x i )

and C 
j 

t . 

How to compute the similarity between two clusters. To consider the information of original data sets, we use the dis-

tributions of attribute values in two clusters to describe the similarity. In the k -mw-modes algorithm [32] for clustering

matrix-object data, the distance between two matrix-objects can be taken as a reference to compute the similarity between

two clusters, because we can consider a matrix-object described by multiple records as a cluster. The similarity between

two clusters is defined as follows. 

Definition 4. Suppose that C 
j 

t = { x 1 , x 2 , . . . , x p } , C r u = { x 1 , x 2 , . . . , x q } are two clusters described by m attributes, where j, r ∈
{ 1 , 2 , . . . , M} , 1 ≤ t ≤ k j , 1 ≤ u ≤ k r . Let V s 

C 
j 

t 

= (x 1 s , x 2 s , . . . , x ps ) ′ , V s C r u 
= (x 1 s , x 2 s , . . . , x qs ) ′ denote the values on the s th attribute

of the two clusters. The similarity between C 
j 

t and C r u is defined as 

s (C j t , C 
r 
u ) = 1 − 1 

m 

m ∑ 

s =1 

d(V 

s 

C j t 

, V 

s 
C r u 

) , (6)
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Table 5 

The ALM. 

c 1 1 c 1 2 c 2 1 c 2 2 c 2 3 c 3 1 c 3 2 

x 1 0.3205 0.0159 0.3745 0.0387 0.0118 0.2804 0.0159 

x 2 0.0235 0.2612 0.0152 0.3065 0.0149 0.0242 0.2451 

x 3 0.0164 0.2259 0.0529 0.3303 0.0120 0.2737 0.0287 

x 4 0.3222 0.0272 0.3098 0.0159 0.0147 0.0174 0.2002 

x 5 0.0227 0.1000 0.0147 0.0176 0.2698 0.0136 0.3005 

x 6 0.0156 0.3238 0.0152 0.4011 0.0149 0.0242 0.1046 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where 

d(V 

s 

C j t 

, V 

s 
C r u 

) = 

1 

2 

∑ 

v ∈ V s 
C 

j 
t 

∪ V s 
C r u 

∣∣∣∣
∑ p 

i =1 
δ(v , x is ) 
p 

−
∑ q 

l=1 
δ(v , x ls ) 
q 

∣∣∣∣, 
and | · | represents the absolute value of a value. δ( · , · ) is computed as the definition in Eq. (2) . 

Obviously, 
∑ p 

i =1 
δ(v , x is ) denotes the number of the attribute value v in X s , so 1 

p 

∑ p 
i =1 

δ(v , x is ) is the frequency of v in

X s . For the given vectors V s 
C 

j 
t 

, V s 
C r u 

, v is from the set of their domain values. | 1 p 

∑ p 
i =1 

δ(v , x is ) − 1 
q 

∑ q 

l=1 
δ(v , x ls ) | denotes the

difference of the frequency of v in V s 
C 

j 
t 

, V s 
C r u 

. The smaller the difference is, the more similar the two vectors V s 
C 

j 
t 

, V s 
C r u 

are.

The differences of all domain values in V s 
C 

j 
t 

, V s 
C r u 

are used to depict the distance d(V s 
C 

j 
t 

, V s 
C r u 

) between V s 
C 

j 
t 

and V s 
C r u 

. As 0 ≤
d(V s 

C 
j 

t 

, V s 
C r u 

) ≤ 2 , we add a normalization factor 1 
2 in Eq. (6) . We have d(V s 

C 
j 

t 

, V s 
C r u 

) = 2 when V s 
C 

j 
t 

∩ V s 
C r u 

= ∅ . 

4.3. The similarities between objects and clusters 

According to Eqs. (1) and (5) , the similarity between an object and a cluster is computed from two different viewpoints.

The definition of the similarity between them can be given as follows. 

Definition 5. Suppose that X is a data set described by m categorical attributes, it can be clustered to generate a set of base

clusterings � = { π1 , π2 , . . . , πM 

} , where π j = { C j 
1 
, C 

j 
2 
, . . . , C 

j 

k j 
} (1 ≤ j ≤ M ). ∀ x i ∈ X , the similarity between x i and C 

j 
t (1 ≤ t ≤

k j ) can be defined as 

sim (x i , C 
j 

t ) = cur _ sim (x i , C 
j 

t ) × al l _ sim (x i , C 
j 

t ) . (7)

As 0 ≤ cur _ sim (x i , C 
j 

t ) ≤ 1 , 0 ≤ al l _ sim (x i , C 
j 

t ) ≤ 1 , so 0 ≤ sim (x i , C 
j 

t ) ≤ 1 . In the similarity sim (x i , C 
j 

t ) , both the relation-

ships based on the current ensemble member π j and all ensemble members � are considered. In each viewpoint, the

information of original data is applied. With the similarity, the new information matrix ALM can be constructed in which

each entry is the similarity between an object and a cluster. 

The example in Section 2 is used to illustrate the construction of the ALM matrix. According to Tables 1 and 2 , for the

original data set X , we can compute the importance of its each attribute value in each cluster by Eq. (2) . For example, the

importance of the attribute value N in C 1 2 can be computed as 

ω(N| C 1 2 ) = 

2 
4 

× f π1 
(N) 

= 

1 
2 

× (1 − −1 
log 2 

× ( 1 
3 

log 1 
3 

+ 

2 
3 

log 2 
3 
)) 

≈ 0 . 0409 . 

By this way, we can compute ω(C | C 1 
2 
) = 0 . 75 , ω(E| C 1 

2 
) ≈ 0 . 0817 . Afterwards, the current-member-based similarity be-

tween x 2 and C 1 
2 

can be computed as cur _ sim (x 2 , C 
1 
2 
) = 

1 
3 (ω(C | C 1 

2 
) + ω(E| C 1 

2 
) + ω(N| C 1 

2 
)) ≈ 0 . 2909 by Eq. (1) . 

Furthermore, we can compute the similarity between any two clusters by Eq. (6) . For C 1 2 and C 2 2 , the set of their attribute

values on A 1 are { C, D }, { C } respectively, so their distance on A 1 can be computed as 1 
2 (| 3 4 − 3 

3 | + | 1 4 − 0 
3 | ) = 

1 
4 . Similarly, their

distances on A 2 , A 3 can be obtained as 0, 1 
6 . Therefore, the distance between C 1 2 and C 2 2 can be obtained as 1 

3 ( 
1 
4 + 0 + 

1 
6 ) =

5 
36 . That is to say, s (C 1 2 , C 

2 
2 ) = 1 − 5 

36 = 

31 
36 . Similarly, s (C 1 2 , C 

1 
2 ) = 1 , s (C 1 2 , C 

3 
2 
) = 

5 
6 . As x 2 is allocated into C 1 2 , C 

2 
2 , C 

3 
2 

in π1 , π2 ,

π3 respectively, the all-members-based similarity between x 2 and C 1 
2 

can be computed as al l _ sim (x 2 , C 
1 
2 
) = 

1 
3 (s (C 1 

2 
, C 1 

2 
) +

s (C 1 2 , C 
2 
2 ) + s (C 1 2 , C 

3 
2 
)) ≈ 0 . 8981 by Eq. (5) . 

Above all, the similarity between x 2 and C 1 2 can be computed as sim (x 2 , C 
1 
2 ) = cur _ sim (x 2 , C 

1 
2 ) × al l _ sim (x 2 , C 

1 
2 ) ≈ 0 . 2612

by Eq. (7) . Table 5 is the ALM matrix constructed by the above way. 

Compared with the BM and RM matrix, the relationships between objects in the ALM matrix may be closer to the rela-

tionships in original data set. For example, in Table 1 , there are two different vectors, x 2 = (C, E, N) , x 6 = (C, E, P ) . According

to Section 2 , �(x 2 , x 6 ) = 0 in the BM and RM that doesn’t match the facts. In the ALM, their Euclidean distance is computed

as �(x , x ) = 0 . 21 . Again, x = (D, E, N) , x = (B, E, N) , x = (C, E, H) . Obviously, x is more similar to x compared with x .
2 6 5 4 3 5 4 3 
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Table 6 

The details of nine data sets. 

Data sets Number of Number of Number of Number of 

objects attributes attribute values clusters 

Zoo 101 16 36 7 

Lymph 148 18 59 4 

Soybean 307 35 132 19 

PTumor 339 17 42 22 

CVotes 435 16 48 2 

BCancer 683 9 89 2 

Mush 8124 22 117 2 

Balance 625 4 20 3 

Dema 357 34 189 6 

 

 

 

 

 

 

 

 

 

 

 

 

But �(x 5 , x 4 ) = �(x 5 , x 3 ) in the BM, and �( x 5 , x 4 ) > �( x 5 , x 3 ) in the RM according to Section 2 . They don’t match the facts.

However, in the ALM, �( x 5 , x 4 ) < �( x 5 , x 3 ). That is because the BM and RM only consider label information of ensemble

members. The ALM improves them by adding the attribute information of original data set, so a better partition may be

obtained by the ALM. An algorithm of constructing the ALM is designed in Algorithm 1 . 

Algorithm 1 An algorithm of constructing the ALM. 

1: Input: 

2: - X: a categorical data set of n objects { x 1 , x 2 , . . . , x n } ; 
3: - �: a set of base clusterings, � = { π1 , π2 , . . . , πM 

} , and π j = { C j 
1 
, C 

j 
2 
, . . . , C 

j 

k j 
} (1 ≤ j ≤ M) ; 

4: Output: - ALM: the new matrix that combines label information and attribute content; 

5: Method: 

6: ALM = ∅ ; 
7: for j = 1 to M do 

8: S = zeros (n, k j ) ; 

9: for t = 1 to k j do 

10: for i = 1 to n do 

11: Compute the current-member-based similarity cur _ sim (x i , C 
j 

t ) between x i and C 
j 

t by Eq.(1); 

12: Compute the all-members-based similarity al l _ sim (x i , C 
j 

t ) between x i and C 
j 

t by Eq.(5); 

13: S(i, t) = cur _ sim (x i , C 
j 

t ) × al l _ sim (x i , C 
j 

t ) ; 

14: end for 

15: end for 

16: ALM = [ ALM, S] ; 

17: end for 

18: Return ALM. 

The time complexity is analyzed as follows. For each attribute, the computation complexity of the similarity between

two clusters is O(| V ′ | ) , and the computation complexity for the importance of attribute values in a cluster is O(k ) , where

| V ′ | = max {| V s | , 1 ≤ s ≤ m } , k = max { k j , 1 ≤ j ≤ M} . Therefore, the time complexity of the algorithm is O(nmMk (| V ′ | + k ))

(| V 

′ | � k ), and can be simplified as O(nmMk | V ′ | ) . 
5. Experiments on real data sets 

In this section, we conduct some experiments on nine real data sets to validate the benefits of the ALM. Firstly, the

details of nine data sets are given. Secondly, three evaluation indexes are introduced. Then, experimental setup is shown.

Finally, comparison results of some ensemble clustering algorithms are reported. 

5.1. Data sets 

To evaluate the benefits of the ALM, some experiments are conducted on nine real data sets, Zoo, Lymphography, Soy-

bean, Primary Tumor, Congressional Votes, Breast Cancer, Mushroom, Balance and Dematology. They all can be downloaded

from UCI [33] For simplicity, they are simplified as Zoo, Lymph, Soybean, PTumor, CVotes, BCancer, Mush, Balance and Dema

respectively. The details are listed in Table 6 . 

5.2. Evaluation indexes 

We used the following three external criteria: (1) accuracy (AC), (2) adjusted rand index (ARI) [34] , (3) normalized mutual

information (NMI) [35] to measure the similarity between two partitions of objects in a given data set. 
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Table 7 

The contingency table. 

C 1 C 2 ��� C k ′ Sums 

P 1 n 11 n 12 ��� n 1 k ′ p 1 
P 2 n 21 n 22 ��� n 2 k ′ p 2 

� � �
. . . � �

P k n k 1 n k 2 ��� n kk ′ p k 
Sums c 1 c 2 ��� c k ′ n 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let X be a categorical data set, C = { C 1 , C 2 , . . . , C k ′ } be a clustering result of X , P = { P 1 , P 2 , . . . , P k } be a real partition of X .

The overlap between C and P can be summarized in a contingency table shown in Table 7 , where n ij denotes the number of

objects in common between P i and C j , n i j = | P i ⋂ 

C j | . p i and c j are the number of objects in P i and C j , respectively. 

The three evaluation indexes are defined as follows: 

AC = 

1 

n 

max 
j 1 j 2 ··· j k ∈ S 

k ∑ 

i =1 

n i j i , 

ARI = 

∑ 

i j C 
2 
n i j 

− [ 
∑ 

i C 
2 
p i 

∑ 

j C 
2 
c j 

] /C 2 n 

1 
2 

[ 
∑ 

i C 
2 
p i 

+ 

∑ 

j C 
2 
c j 

] − [ 
∑ 

i C 
2 
p i 

∑ 

j C 
2 
c j 

] /C 2 n 

, 

NMI = 

∑ k 
i =1 

∑ k ′ 
j=1 n i j log( 

n i j n 

p i c j 
) √ ∑ k 

i =1 p i l og( p i 
n 
) 
∑ k ′ 

j=1 c j l og( 
c j 
n 
) 

, 

where n 1 j ∗
1 

+ n 2 j ∗
2 

+ · · · + n k j ∗
k 

= max 
j 1 j 2 ... j k ∈ S 

∑ k 
i =1 n i j i 

( j ∗1 j 
∗
2 . . . j 

∗
k 

∈ S) and S = { j 1 j 2 . . . j k : j 1 , j 2 , . . . , j k ∈ { 1 , 2 , . . . , k } , j i � = j t for

i � = t } is a set of all permutations of 1 , 2 , . . . , k . In addition, we consider that the higher the values of AC, ARI, NMI are, the

better the clustering solution is. 

5.3. Experimental setup 

In this experiment, in order to cluster the ALM, we apply the k -means technique into the new ensemble clustering

framework, and form a new ensemble clustering algorithm named as KALM. To validate the benefits of the ALM, the same

clustering technique, k -means, is used to cluster the BM [26] and the RM [20] . The corresponding ensemble clustering algo-

rithms are called as KBM and KRM. As KALM, KBM and KRM only have a difference on the information matrix, the benefits

of the ALM can be shown by comparing these three ensemble clustering algorithms. Moreover, the proposed algorithm

KALM is also compared with other ensemble clustering algorithms, including CSPA [36] , HGPA [36] , MCLA [36] , SEC [37] . 

To generate a set of base clusterings, the k -modes algorithm [7] is applied in this experiment. In this process, Full-space

method and Sub-space method are used. They are described as follows. 

Full-space method: For a given categorical data set, multiple different ensemble members can be generated by the k -

modes algorithm with random initial centers. In order to introduce an artificial instability to the k -modes, we employ two

ways to obtain the number of clusters in each ensemble member [20] : (i) Fixed- k , k = K (where K is the number of real

clusters), (ii) Random- k , k ∈ { 2 , 3 , . . . , 
 √ 

n �} . 
Sub-space method: In this method, a given categorical data set is clustered on its different subspaces to generate multiple

ensemble members [21] . Similar to the study of [38] , for a given data set of n objects described by m attributes, a subspace

described by q attributes can be generated by q = q min + � α(q max − q min ) � , where α ∈ [0, 1] is an uniform random variable,

q min and q max represent the lower and upper bounds of the subspace respectively. They usually are set to 0.75m and 0.85m.

We select q attributes sequently from m attributes. In each selection, we randomly select the h th attribute of m attributes

as an attribute in the subspace, h = � 1 + βm � , and β ∈ [0, 1) is also an uniform random variable. The k -modes algorithm is

still used to obtain a set of base clusterings, and the two ways of obtaining the number of clusters are still used. 

In this experiment, we run the k -modes algorithm 10 times to generate a set of base clusterings containing 10 ensemble

members for the full-space and sub-space methods. Then, those compared ensemble clustering algorithms are executed 30

times and the average values are taken as the final results to guarantee the credibility of experiments. To avoid the influence

of the set of base clusterings, the above process is repeated 30 times. 

5.4. Experimental results 

The comparison results of the seven algorithms on the nine data sets are shown in Tables 8–10 . The values of evaluation

indexes obtained by these algorithms are ranked for each data set, the most highest value getting the rank 1, the second
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Table 8 

Comparison results of the ensemble algorithms on AC. 

Full-space(i) Full-space(ii) 

Datasets KALM KBM KRM CSPA HGPA MCLA SEC KALM KBM KRM CSPA HGPA MCLA SEC 

Zoo 0.7945(1) 0.6728(5) 0.6730(4) 0.5812(7) 0.5902(6) 0.7211(2) 0.6809(3) 0.8000(1) 0.6780(4) 0.6769(5) 0.5805(6) 0.5753(7) 0.7063(2) 0.6791(3) 

Lymph 0.4532(4) 0.4543(3) 0.4565(2) 0.4189(6) 0.3226(7) 0.4417(5) 0.4559(1) 0.4996(1) 0.4637(5) 0.4835(2) 0.4351(6) 0.3910(7) 0.4721(3) 0.4663(4) 

Soybean 0.6177(1) 0.4951(3) 0.5458(2) 0.4417(7) 0.4792(6) 0.4833(5) 0.4840(4) 0.6102(1) 0.4626(3) 0.4995(2) 0.4100(6) 0.4278(5) 0.1964(7) 0.4592(4) 

PTumor 0.3128(1) 0.3029(5) 0.3072(3) 0.2793(6) 0.2673(7) 0.3056(4) 0.3115(2) 0.3053(2.5) 0.3045(4) 0.3053(2.5) 0.2652(5) 0.2565(6) 0.2544(7) 0.3099(1) 

CVotes 0.8657(1) 0.8622(3.5) 0.8615(5) 0.8530(6) 0.5333(7) 0.8622(3.5) 0.8633(2) 0.8757(1) 0.8664(4) 0.8750(2) 0.8518(6) 0.8684(3) 0.8535(5) 0.8467(7) 

BCancer 0.9460(1) 0.9226(4) 0.9270(3) 0.8097(6) 0.5038(7) 0.9281(2) 0.9065(5) 0.9395(1) 0.8290(6) 0.9283(2) 0.8141(7) 0.8380(4) 0.8929(3) 0.8376(5) 

Mush 0.8546(1) 0.7851(3) 0.7597(5) 0.7556(6) 0.5052(7) 0.8038(2) 0.7725(4) 0.7269(3) 0.6693(5) 0.7221(4) 0.7815(1) 0.5236(7) 0.7470(2) 0.6684(6) 

Balance 0.4356(1) 0.4204(5) 0.4347(2) 0.4022(7) 0.4025(6) 0.4235(3) 0.4232(4) 0.4572(1) 0.4297(2) 0.4237(4) 0.4034(7) 0.4039(6) 0.4193(5) 0.4264(3) 

Dema 0.7047(1) 0.6621(2) 0.6272(6) 0.6276(5) 0.5350(7) 0.6538(4) 0.6595(3) 0.7178(1) 0.6710(4) 0.6742(3) 0.6426(7) 0.6481(6) 0.7149(2) 0.6675(5) 

AvgR 1.33 3.72 3.56 6.22 6.67 3.39 3.11 1.39 4.11 2.94 5.67 5.67 4.25 4.38 

Sub-space(i) Sub-space(ii) 

Datasets KALM KBM KRM CSPA HGPA MCLA SEC KALM KBM KRM CSPA HGPA MCLA SEC 

Zoo 0.7944(1) 0.6786(5) 0.6831(4) 0.5772(7) 0.5932(6) 0.6968(2) 0.6837(3) 0.8031(1) 0.6961(4) 0.7035(2) 0.5904(6) 0.5677(7) 0.6929(5) 0.6973(3) 

Lymph 0.4624(1) 0.4450(4) 0.4424(5) 0.4239(6) 0.3240(7) 0.4560(2) 0.4491(3) 0.4881(1) 0.4452(5) 0.4693(2) 0.4232(6) 0.3725(7) 0.4487(3) 0.4484(4) 

Soybean 0.6160(1) 0.4917(3) 0.5392(2) 0.4440(7) 0.4779(6) 0.4846(4) 0.4813(5) 0.6093(1) 0.4680(3) 0.5007(2) 0.4064(6) 0.4202(5) 0.2187(7) 0.4613(4) 

PTumor 0.3050(1) 0.2863(4) 0.2925(3) 0.2667(6) 0.2559(7) 0.2815(5) 0.2928(2) 0.2996(1) 0.2905(4) 0.2932(3) 0.2616(5) 0.2466(7) 0.2516(6) 0.2935(2) 

CVotes 0.8676(1) 0.8618(3) 0.8609(5) 0.8530(6) 0.5333(7) 0.8616(4) 0.8638(2) 0.8744(1) 0.8696(3) 0.8697(2) 0.8540(5) 0.8515(7) 0.8577(4) 0.8517(6) 

BCancer 0.9446(1) 0.9023(3) 0.8056(6) 0.8248(5) 0.5044(7) 0.9310(2) 0.8842(4) 0.9404(1) 0.8334(5) 0.9017(3) 0.8225(7) 0.8408(4) 0.9178(2) 0.8289(6) 

Mush 0.8496(1) 0.7864(3) 0.7690(6) 0.7778(5) 0.5052(7) 0.8135(2) 0.7835(4) 0.7215(4) 0.6710(5) 0.7278(3) 0.7438(2) 0.5267(7) 0.7447(1) 0.6668(6) 

Balance 0.4507(2) 0.4272(5) 0.4603(1) 0.4101(6) 0.4033(7) 0.4432(3) 0.4296(4) 0.4641(1) 0.4422(3) 0.4564(2) 0.4145(6) 0.4143(7) 0.4234(5) 0.4415(4) 

Dema 0.6746(1) 0.6535(3) 0.6237(5) 0.6133(6) 0.5281(7) 0.6569(2) 0.6516(4) 0.7106(2) 0.6682(5) 0.6701(4) 0.6407(6) 0.6036(7) 0.7199(1) 0.6705(3) 

AvgR 1.11 3.67 4.11 6 6.78 2.89 3.44 1.44 4.11 2.56 5.44 6.44 3.78 4.22 
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Table 9 

Comparison results of the ensemble algorithms on ARI. 

Full-space(i) Full-space(ii) 

Datasets KALM KBM KRM CSPA HGPA MCLA SEC KALM KBM KRM CSPA HGPA MCLA SEC 

Zoo 0.7606(1) 0.6092(5) 0.6121(4) 0.4636(7) 0.4640(6) 0.6543(2) 0.6182(3) 0.7688(1) 0.6090(5) 0.6149(3) 0.4592(6) 0.4533(7) 0.6409(2) 0.6135(4) 

Lymph 0.1312(1) 0.1201(2) 0.1094(5) 0.1014(6) 0.0134(7) 0.1110(4) 0.1152(3) 0.1697(1) 0.1255(4) 0.1485(2) 0.1198(6) 0.0771(7) 0.1428(3) 0.1216(5) 

Soybean 0.4408(1) 0.3564(3) 0.3850(2) 0.2933(7) 0.3170(6) 0.3261(5) 0.3441(4) 0.4372(1) 0.3237(3) 0.3448(2) 0.2553(5) 0.2549(6) 0.0527(7) 0.3173(4) 

PTumor 0.1318(1) 0.1240(3) 0.1270(2) 0.1084(6) 0.0991(7) 0.1202(5) 0.1234(4) 0.1251(1) 0.1200(3) 0.1207(2) 0.0987(5) 0.0860(6) 0.0197(7) 0.1184(4) 

CVotes 0.5338(1) 0.5237(3.5) 0.5217(5) 0.4975(6) 0.0023(7) 0.5237(3.5) 0.5270(2) 0.5636(1) 0.5468(3) 0.5618(2) 0.4942(7) 0.5424(4) 0.4988(6) 0.5063(5) 

BCancer 0.7947(1) 0.7266(4) 0.7447(2) 0.3832(6) -0.0013(7) 0.7325(3) 0.6809(5) 0.7717(1) 0.5189(5) 0.7671(2) 0.3969(7) 0.4566(6) 0.6253(3) 0.5324(4) 

Mush 0.5320(1) 0.3992(3) 0.3562(5) 0.2784(6) 0.0000(7) 0.4151(2) 0.3760(4) 0.2292(3) 0.1394(5) 0.2145(4) 0.3350(1) 0.0034(7) 0.2883(2) 0.1384(6) 

Balance 0.0301(2) 0.0277(3) 0.0250(6) 0.0254(5) 0.0318(1) 0.0230(7) 0.0269(4) 0.0400(2) 0.0250(4.5) 0.0217(7) 0.0258(3) 0.0250(4.5) 0.0286(2) 0.0243(6) 

Dema 0.6418(1) 0.5660(2) 0.5122(5) 0.5036(6) 0.4080(7) 0.5279(4) 0.5469(3) 0.6581(1) 0.5768(4) 0.5869(3) 0.5145(7) 0.5728(5) 0.6085(2) 0.5580(6) 

AvgR 1.11 3.17 4 6.11 6.11 3.94 3.56 1.33 4.06 3 5.22 5.83 3.78 4.89 

Sub-space(i) Sub-space(ii) 

Datasets KALM KBM KRM CSPA HGPA MCLA SEC KALM KBM KRM CSPA HGPA MCLA SEC 

Zoo 0.7630(1) 0.6181(5) 0.6340(2) 0.4558(7) 0.4677(6) 0.6240(3) 0.6214(4) 0.7731(1) 0.6334(4) 0.6482(2) 0.4584(6) 0.4487(7) 0.6233(5) 0.6360(3) 

Lymph 0.1392(1) 0.1192(3) 0.0947(6) 0.1128(5) 0.0140(7) 0.1208(2) 0.1172(4) 0.1613(1) 0.1168(4) 0.1368(2) 0.1132(5) 0.0624(7) 0.1296(3) 0.1130(6) 

Soybean 0.4419(1) 0.3519(3) 0.3816(2) 0.2908(7) 0.3087(6) 0.3253(5) 0.3380(4) 0.4405(1) 0.3287(3) 0.3448(2) 0.2493(5) 0.2465(6) 0.0724(7) 0.3188(4) 

PTumor 0.1260(1) 0.1124(3) 0.1162(2) 0.0985(5) 0.0858(7) 0.0922(6) 0.1069(4) 0.1189(1) 0.1082(3) 0.1116(2) 0.0920(5) 0.0778(6) 0.0153(7) 0.1038(4) 

CVotes 0.5395(1) 0.5227(3) 0.5206(5) 0.4976(6) 0.0023(7) 0.5219(4) 0.5283(2) 0.5596(1) 0.5510(2) 0.5460(3) 0.5007(6) 0.4964(7) 0.5110(5) 0.5120(4) 

BCancer 0.7896(1) 0.6892(3) 0.4796(5) 0.4236(6) -0.0012(7) 0.7407(2) 0.6318(4) 0.7747(1) 0.5318(4) 0.7060(2) 0.4218(7) 0.4640(6) 0.7001(3) 0.5088(5) 

Mush 0.5139(1) 0.3816(3) 0.3458(5) 0.3260(6) 0.0000(7) 0.4220(2) 0.3710(4) 0.2167(4) 0.1400(5) 0.2266(3) 0.2947(1) 0.0048(7) 0.2867(2) 0.1360(6) 

Balance 0.0424(1) 0.0357(3) 0.0335(5) 0.0316(6) 0.0287(7) 0.0402(2) 0.0338(4) 0.0438(1) 0.0375(3) 0.0387(2) 0.0347(5) 0.0334(6) 0.0313(7) 0.0358(4) 

Dema 0.6104(1) 0.5551(2) 0.5131(5) 0.4961(6) 0.3995(7) 0.5318(4) 0.5382(3) 0.6530(1) 0.5783(4) 0.5816(3) 0.5167(7) 0.5200(6) 0.6151(2) 0.5684(5) 

AvgR 1 3.11 4.11 6 6.78 3.33 3.67 1.33 3.56 2.33 5.22 6.44 4.56 4.56 
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Table 10 

Comparison results of the ensemble algorithms on NMI. 

Full-space(i) Full-space(ii) 

Datasets KALM KBM KRM CSPA HGPA MCLA SEC KALM KBM KRM CSPA HGPA MCLA SEC 

Zoo 0.8472(1) 0.7679(5) 0.7735(3) 0.6969(6) 0.6890(7) 0.7787(2) 0.7692(4) 0.8476(1) 0.7692(4) 0.7718(2) 0.6945(6) 0.6882(7) 0.7703(3) 0.7664(5) 

Lymph 0.1894(1) 0.1767(2) 0.1571(5) 0.1460(6) 0.0554(7) 0.1613(4) 0.1709(3) 0.2248(1) 0.1787(4) 0.1952(2) 0.1647(6) 0.1210(7) 0.1897(3) 0.1741(5) 

Soybean 0.7627(1) 0.6545(3) 0.6945(2) 0.6086(7) 0.6443(4) 0.6345(6) 0.6399(5) 0.7475(1) 0.6148(3) 0.6477(2) 0.5664(6) 0.5779(5) 0.1264(7) 0.6052(4) 

PTumor 0.3983(1) 0.3843(3) 0.3866(2) 0.3743(6) 0.3614(7) 0.3751(5) 0.3778(4) 0.3867(1) 0.3729(3) 0.3756(2) 0.3610(5) 0.3437(6) 0.0787(7) 0.3656(4) 

CVotes 0.4657(1) 0.4489(5) 0.4521(2) 0.4508(3) 0.0034(7) 0.4488(6) 0.4506(4) 0.4770(2) 0.4666(4) 0.4820(1) 0.4473(5) 0.4675(3) 0.4467(6) 0.4402(7) 

BCancer 0.7203(1) 0.6306(4) 0.6446(2) 0.3623(6) 0.0001(7) 0.6322(3) 0.5949(5) 0.7009(1) 0.4969(4) 0.6868(2) 0.3822(7) 0.4564(6) 0.5443(3) 0.4937(5) 

Mush 0.4915(1) 0.3657(3) 0.3265(5) 0.2142(6) 0.0001(7) 0.3706(2) 0.3492(4) 0.3156(1) 0.1810(5) 0.2705(2) 0.2606(3) 0.0025(7) 0.2246(4) 0.1778(6) 

Balance 0.0296(2) 0.0261(4) 0.0268(3) 0.0228(6) 0.0348(1) 0.0213(7) 0.0253(5) 0.0422(1) 0.0242(3) 0.0216(7) 0.0231(5) 0.0225(6) 0.0265(2) 0.0237(4) 

Dema 0.7614(1) 0.6473(3) 0.6767(2) 0.5969(6) 0.5380(7) 0.6121(5) 0.6354(4) 0.7889(1) 0.6693(5) 0.7147(2) 0.6109(7) 0.6902(3) 0.6851(4) 0.6588(6) 

AvgR 1.11 3.56 2.89 5.78 6 4.44 4.22 1.11 3.89 2.44 5.56 5.56 4.33 5.11 

Sub-space(i) Sub-space(ii) 

Datasets KALM KBM KRM CSPA HGPA MCLA SEC KALM KBM KRM CSPA HGPA MCLA SEC 

Zoo 0.8485(1) 0.7812(3) 0.7916(2) 0.6906(7) 0.7007(6) 0.7658(5) 0.7765(4) 0.8477(1) 0.7769(3) 0.7888(2) 0.6909(6) 0.6898(7) 0.7469(5) 0.7749(4) 

Lymph 0.2020(1) 0.1707(2) 0.1524(6) 0.1604(5) 0.0577(7) 0.1665(4) 0.1682(3) 0.2141(1) 0.1686(4) 0.1826(2) 0.1584(6) 0.1047(7) 0.1775(3) 0.1640(5) 

Soybean 0.7605(1) 0.6520(3) 0.6957(2) 0.6078(7) 0.6330(5) 0.6295(6) 0.6347(4) 0.7492(1) 0.6211(3) 0.6516(2) 0.5646(6) 0.5690(5) 0.1732(7) 0.6078(4) 

PTumor 0.3913(1) 0.3734(3) 0.3759(2) 0.3618(4) 0.3439(7) 0.3457(6) 0.3614(5) 0.3813(1) 0.3654(3) 0.3689(2) 0.3548(5) 0.3328(6) 0.0704(7) 0.3559(4) 

CVotes 0.4754(1) 0.4489(5) 0.4480(6) 0.4512(2) 0.0034(7) 0.4495(4) 0.4503(3) 0.4732(1) 0.4663(3) 0.4691(2) 0.4551(4) 0.4360(7) 0.4526(5) 0.4465(6) 

BCancer 0.7174(1) 0.6025(3) 0.4471(5) 0.4134(6) 0.0001(7) 0.6342(2) 0.5553(4) 0.7051(1) 0.5075(4) 0.6553(2) 0.4175(7) 0.4729(5) 0.5942(3) 0.4721(6) 

Mush 0.4766(1) 0.3496(4) 0.3207(5) 0.2533(6) 0.0001(7) 0.3781(2) 0.3529(3) 0.3082(1) 0.1922(5) 0.2712(2) 0.2304(3) 0.0036(7) 0.2234(4) 0.1851(6) 

Balance 0.0453(1) 0.0325(5) 0.0348(3) 0.0277(7) 0.0345(4) 0.0369(2) 0.0318(6) 0.0454(1) 0.0347(3) 0.0388(2) 0.0303(5) 0.0293(6) 0.0284(7) 0.0342(4) 

Dema 0.7418(1) 0.6351(3) 0.6645(2) 0.5891(6) 0.5250(7) 0.6098(5) 0.6241(4) 0.7821(1) 0.6634(4) 0.7185(2) 0.6110(7) 0.6475(6) 0.6732(3) 0.6513(5) 

AvgR 1 3.44 3.67 5.56 6.33 4 4 1 3.56 2 5.44 6.22 4.89 4.89 
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Table 11 

The average rank R of the seven compared algorithms. 

Algorithm KALM KBM KRM CSPA HGPA MCLA SEC 

R 1.19 3.67 3.13 5.69 6.24 3.97 4.17 

Fig. 2. The Bonferroni-Dunn test of the KALM algorithm in terms of AC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

higher value getting rank 2, . . . , as shown in the parentheses in Tables 8–10 . AvgR represents the average rank of these

algorithms on nine data sets. From Tables 8–10 , we can see that AvgR of the KALM ranks the first on all evaluation indexes.

That is to say, the KALM outperforms other compared algorithms in general. 

In detail, when the number of clusters is equal to K ( K is the number of real clusters), we can see that the KALM

algorithm is better than the other ensemble clustering algorithms on eight data sets at least for all evaluation indexes.

When the number of clusters is random, there are seven data sets at least for all evaluation indexes. Particularly, for the

index NMI, the KALM algorithm is better than the other ensemble clustering algorithms on all data sets under the condition

of Sub-space method. For Full-space method, there are also eight data sets. 

To give a comprehensive comparison [39] , we use the Friedman test and Bonferroni-Dunn test [40] to analyze the differ-

ences of the seven compared algorithms. According to AvgR we can get the average rank R of these algorithms for all cases.

Suppose that r 
j 
i 

represents the rank of the j th algorithm on the i th case, the average rank of the j th algorithm R j = 

1 
B 

∑ B 
i =1 r 

j 
i 
,

where B represent the number of cases. The Friedman test compares the average ranks of algorithms. As there are A = 7

algorithms and B = 12 cases (i.e., 4 generating ensemble member methods and 3 external criterions), the average ranks of

the seven algorithms can be computed shown in Table 11 . According to the average ranks R , we still know the KALM is

better than the other six algorithms. 

Under the null-hypothesis, all algorithms are equivalent and so their ranks should be equal (i.e., R j = 4 for four algo-

rithms). The Friedman test aims to check whether the measured average ranks are significantly different from the mean

rank R j = 4 expected under the null-hypothesis: 
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Fig. 3. The Bonferroni-Dunn test of the KALM algorithm in terms of ARI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

χ2 
F = 

12 B 

A (A + 1) 

[ 

A ∑ 

j=1 

R 

2 
j −

A (A + 1) 2 

4 

] 

= 

12 · 12 

7 · (7 + 1) 

[
1 . 19 

2 + 3 . 67 

2 + 3 . 13 

2 + 5 . 69 

2 + 6 . 24 

2 + 3 . 97 

2 + 4 . 17 

2 − 7 · (7 + 1) 2 

4 

]
= 44 . 09 . 

With the seven algorithms, the Friedman statistic is distributed according to the χ2 
F 

distribution with A − 1 = 6 degrees

of freedom. The critical value for α = 0 . 1 is 10.64 < 44.09, so we reject the null-hypothesis and we think the compared

seven algorithms have differences. 

Then, we use the Bonferroni-Dunn test to reveal the differences. The critical value is 2.394 when we use α = 0 . 1 ac-

cording to [40] . So the critical difference for nine data sets can be computed as CD = q α

√ 

A (A +1) 
6 N = 2 . 394 ·

√ 

7 ·(7+1) 
6 ·9 = 2 . 43 .

N is the number of data sets. By the critical difference we can identify the algorithms for all cases. If the difference of the

average rank AvgR is larger than the critical difference CD for two algorithms, we think they are significantly different. If the

difference of AvgR is larger than the half of CD and is smaller than CD for two algorithms, we think they are comparable.

If the difference of AvgR is close to 0 for two algorithms, we think they almost have not difference. Figs. 2–4 show the

Bonferroni-Dunn test of the seven algorithms in terms of the three evaluation indexes. The circles represent the average

ranks AvgR of algorithms and the length of the bar is the critical difference CD . 

From Figs. 2–4 , we can find that the KALM algorithm can be differentiated with the other six algorithms. In terms of AC,

we can see from Fig. 2 (a) that the KALM algorithm is significantly different from CSPA, HGPA while these two algorithms

almost have not difference. Meanwhile, the KALM algorithm is comparable with KBM, KRM, MCLA, SEC while there aren’t

almost difference among these four algorithms. In Fig. 2 (b)–(d), the KALM algorithm is significantly different from five algo-

rithms at least. Therefore, we can think the KALM algorithm outperforms other compared algorithms. In the same way, the

difference among com pared algorithms can be analyzed in terms of ARI and NMI. In addition, the KALM algorithm ranks

first on all cases according to Figs. 2–4 . Above all, the KALM algorithm outperforms other compared algorithms because it

has higher ranks and has some differences compared with those algorithms. 
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Fig. 4. The Bonferroni-Dunn test of the KALM algorithm in terms of NMI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusions and future work 

In this paper, we proposed a new ensemble clustering framework for categorical data, in which original data information

and label information of ensemble members are combined to construct the information matrix. For the new framework, dif-

ferent methods can be proposed to combine original data information and label information of ensemble members, different

methods can be used to generate the set of base clusterings, and the information matrix can be clustered by different algo-

rithms. The new framework can be instantiated as many ensemble clustering algorithms according to different requirements.

Under this new framework, we proposed a new algorithm to construct the ALM matrix, in which the current-member-based

similarities and the all-members-based similarities are defined. A better final partition is obtained by the ALM matrix, be-

cause it considers the distribution of attribute content in each ensemble member and the relationships among ensemble

members based on the distribution. We carried out some experiments on real data sets and the results have shown that

the benefits of the ALM matrix by comparing some ensemble clustering algorithms for categorical data. For other types of

data, the new framework also can work by using corresponding object-to-cluster similarity measures to consider original

data information. This contents will be studied in our future work. 
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