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Distance provides a comprehensible perspective for characterizing the difference between two objects in
a metric space. There are many measures which have been proposed and applied for various targets in
rough set theory. In this study, through introducing set distance and partition distance to rough set the-
ory, we investigate how to understand measures from rough set theory in the viewpoint of distance,
which are inclusion degree, accuracy measure, rough measure, approximation quality, fuzziness measure,
three decision evaluation criteria, information measure and information granularity. Moreover, a rough
set framework based on the set distance is also a very interesting perspective for understanding rough
set approximation. From the view of distance, these results look forward to providing a more comprehen-
sible perspective for measures in rough set theory.

� 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Rough set theory proposed by Pawlak in [17] is a relatively new
soft computing tool for the analysis of a vague description of an ob-
ject, and has become a popular mathematical framework for pat-
tern recognition, image processing, feature selection, neuro
computing, conflict analysis, decision support, data mining and
knowledge discovery from large data sets [1–3,13,23,30,39,42].
Rough-set-based data analysis starts from a data table, called infor-
mation tables. The information tables contain data about objects of
interest, characterized by a finite set of attributes. It is often inter-
esting to discover some dependency relationships (patterns). An
information table where condition attributes and decision attri-
butes are distinguished is called a decision table. From a decision
table one can induce some patterns in form of ‘‘if. . ., then. . .’’ deci-
sion rules [5,6,19,30]. More exactly, the decision rules say that if
condition attributes have given values, then decision attributes
have other given values.

To date, many measures for uncertainty have been proposed in
rough set theory. As follows, for our further development, we
briefly review several important measures. The concept of inclu-
sion degree has been introduced into rough set theory, which is de-
rived from the including measure among sets. Several authors have
established several important relationships between inclusion de-
gree and measures of rough set data analysis [27,40]. In rough set
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theory, as three classical measures, approximation accuracy, rough
measure and approximate quality can be used to assess the rough-
ness of a rough set and a rough classification [7,17]. For any object
on a given universe, the membership function of the object in a
rough set can be derived by the inclusion degree between the
equivalence class including itself and a target concept, which can
construct a fuzzy set on the universe. Several authors have studied
the fuzziness of a rough set from various viewpoints [21,41]. In re-
cent years, how to evaluate the decision performance of a decision
rule and a decision-rule set has become a very important issue in
rough set theory. There are two classical measures such as cer-
tainty measure and coverage measure [17]. In order to assess the
decision performance of a decision table, Qian et al. [20] proposed
three evaluation parameters a, b and c which are used to calculate
the entire certainty, the entire consistency and the entire support
of all decision rules from a given decision table. However, each of
the above measures is defined by different forms, which is hard
to understand their sematic meanings. In other word, the uniform
characterization of these measures is desirable. As we know, the
concept of distance is a main approach to understand the differ-
ence between two objects in algebra, geometry, set theory, coding
theory and many other areas. Hence, in this study, we aims to pro-
pose the concept of set distance to characterize and redefine each
of these measures in order to more easily comprehend their mean-
ings. It is exciting that Pawlak’s rough set framework can be recon-
figured using the set distance. This idea also can be used to
redefined the variable precision rough set model proposed by Ziar-
ko [46]. These results will be very helpful for us to understand the
essence of rough set approximation. That is to say, it is a more
comprehensible perspective for measures in rough set theory.
le perspective for measures in rough set theory, Knowl. Based Syst. (2011),
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In addition, information entropy and information granularity are
two main approaches to characterizing the uncertainty of an infor-
mation system [14,18,28,43,45]. In recent years, several various
forms of information entropy and information granularity have been
given in [13,14,28,43,45]. It is deserved to point out that when the
information granularity (or information entropy) of one equivalence
partition is equal to that of the other equivalence partition, these
two equivalence partitions have the same uncertainty. Nevertheless,
it does not mean that these two equivalence partitions are equiva-
lent. That is to say, information entropy and information granularity
cannot characterize the difference between any two equivalence
partitions in a given information table. In fact, we often need to dis-
tinguish two equivalence partitions for uncertain data processing in
some practical applications. To date, how to measure the difference
between equivalence partitions has not been reported. To further
investigate uncertainty theory in the framework of rough set theory,
for this consideration, we will propose the concept of partition dis-
tance to calculate the difference between two partitions on the same
universe in this paper. In particular, we also reveal the essence of
definitions of information entropy and information granularity from
the viewpoint of partition distance.

The rest of this paper is organized as follows. Some preliminary
concepts in rough set theory are briefly recalled in Section 2. In
Section 3, we introduce the concept of set distance to characterize
several important measures, which are inclusion degree, accuracy
measure, rough measure, approximation quality, several decision
evaluation parameters and the fuzziness measures of rough sets.
In addition, we employ the set distance for reconfiguring the rough
set framework and the variable precision rough set model. In Sec-
tion 4, we first define the concept of partition distance to calculate
the difference between two partitions on the same universe, then
employ the partition distance to understand information entropy
and information granularity from the viewpoint of distance. Sec-
tion 6 concludes this paper with some remarks and discussions.
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2. Preliminary knowledge in rough sets

In this section, we review some basic concepts such as indis-
cernibility relation, partition, partial relation of knowledge and
decision tables in rough set theory.

An information table (sometimes called a data table, an attri-
bute-value system, a knowledge representation system, etc.), as a
basic concept in rough set theory, provides a convenient frame-
work for the representation of objects in terms of their attribute
values. An information table S is a pair (U,A), where U is a non-
empty, finite set of objects and is called the universe and A is a
non-empty, finite set of attributes. For each a 2 A, a mapping
a : U ? Va is determined by a given decision table, where Va is
the domain of a.

Each non-empty subset B # A determines an indiscernibility
relation in the following way,

RB ¼ fðx; yÞ 2 U � UjaðxÞ ¼ aðyÞ;8a 2 Bg:

The relation RB partitions U into some equivalence classes given by

U=RB ¼ f½x�Bjx 2 Ug; just U=B;

where [x]B denotes the equivalence class determined by x with re-
spect to B, i.e.,

½x�B ¼ fy 2 Ujðx; yÞ 2 RBg:

Given an equivalence relation R on the universe U and a subset
X # U. One can define a lower approximation of X and an upper
approximation of X by

RX ¼ fx 2 Uj½x�R # Xg
Please cite this article in press as: J. Liang et al., Distance: A more comprehensib
doi:10.1016/j.knosys.2011.11.003
and

RX ¼ fx 2 Uj½x�R \ X – Øg;

respectively [15]. The ordered pair ðRX;RXÞ is called a rough set of X
with respect to R.

We define a partial relation � on the family {U/BjB # A} as fol-
lows: U/P � U/Q (or U/Q � U/P) if and only if, for every Pi 2 U/P, there
exists Qj 2 U/Q such that Pi # Qj, where U=P ¼ fP1; P2; . . . ; Pmg and
U=Q ¼ fQ 1;Q 2; . . . ;Qng are partitions induced by P, Q # A, respec-
tively. In this case, we say that Q is coarser than P, or P is finer than
Q. If U/P � U/Q and U/P – U/Q, we say Q is strictly coarser than P
(or P is strictly finer than Q), denoted by U/P � U/Q (or U/Q � U/P).

It is clear that U/P � U/Q if and only if, for every X 2 U/P, there
exists Y 2 U/Q such that X # Y, and there exist X0 2 U/P, Y0 2 U/Q
such that X0 � Y0.

A decision table is an information table S = (U,C [ D) with
C \ D = Ø, where an element of C is called a condition attribute,
C is called a condition attribute set, an element of D is called
a decision attribute, and D is called a decision attribute set.
One can extract certain decision rules from a consistent decision
table and uncertain decision rules from an inconsistent decision
table.
3. Set distance and some measures in rough sets

The concept of set closeness between two classical sets is used
to measure the degree of the sameness between sets. Let X and Y be
two finite sets, the measure is defined by HðX;YÞ ¼ jX\Y j

jX[Y j (X [ Y – Ø).

Obviously, the formula 1	 HðX;YÞ ¼ 1	 jX\Yj
jX[Yj can characterize the

difference between two finite classical sets. In a broad sense, this
measure can be regarded as a generalized distance [22]. Using
the measure, one can obtain the following distance between two
finite classical sets.
Definition 1. Let X, Y are two finite sets. The distance between X
and Y is defined as

dðX;YÞ ¼ 1	 jX \ Yj
jX [ Yj ; ð1Þ

where X [ Y – Ø.
From the definition of the distance, one can easily obtain the

following property.

Property 1. The distance d satisfies the following properties:

(1) d(X,Y) P 0;
(2) d(X,Y) = d(Y,X);
(3) d(X,Y) + d(Y,Z) P d(X,Z).
Proof. The three properties will be proved as follows.

(1) Obviously, jX [ YjP jX \ Yj. Thus we have that,
le pers
dðX; YÞ ¼ jX [ Yj 	 jX \ Y j
jX [ Yj P 0:
(2) It is easy to know that jX [ Yj = jY [ Xj and jX \ Yj = jY \ Xj.
Therefore,
dðX; YÞ ¼ jX [ Yj 	 jX \ Y j
jX [ Yj ¼ jY [ Xj 	 jY \ Xj

jY [ Xj ¼ dðY; XÞ:
(3) Given any a, b and c, and let 0 < b 6 a, c P 0. From
bþc
aþc 	 b

a ¼
cða	bÞ
aðaþcÞ P 0, it follows that b

a 6
bþc
aþc. Hence,
pective for measures in rough set theory, Knowl. Based Syst. (2011),
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dðX;YÞ þ dðY; ZÞ 	 dðX; ZÞ

¼ 1	 jX \ Y j
jX [ Y j þ 1	 jY \ Zj

jY [ Zj 	 1

þ jX \ Zj
jX [ Zj ¼ 1	 jX \ Y j

jX [ Y j 	
jY \ Zj
jY [ Zj þ

jX \ Zj
jX [ Zj

P 1	 jX \ Yj þ jZj 	 jZ \ ðX [ YÞj
jX [ Y [ Zj

	 jY \ Zj þ jXj 	 jX \ ðY [ ZÞj
jX [ Y [ Zj þ jX \ Zj

jX [ Y [ Zj

¼ 1	 jX \ Y j þ jZj 	 ðjX \ Zj þ jY \ Zj 	 jX \ Y \ ZjÞ
jX [ Y [ Zj

	 jY \ Zj þ jXj 	 ðjX \ Yj þ jX \ Zj 	 jX \ Y \ ZjÞ
jX [ Y [ Zj

þ jX \ Zj
jX [ Y [ Zj

¼ 1	 jXj þ jZj 	 jX \ Zj
jX [ Y [ Zj þ 2ðjX \ Zj 	 jX \ Y \ ZjÞ

jX [ Y [ Zj
P 0
273
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Therefore, d(X,Y) + d(Y,Z) P d(X,Z). h

In this section, we establish the relationship between the set
distance and each of several measures in rough set theory.
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3.1. Set distance and inclusion degree

An approximate mereological calculus called rough mereology
(i.e., theory of rough inclusions) has been proposed as a formal
treatment of the hierarchy of relations of being a part in a degree.
The degree of inclusion is a particular case of inclusion in a degree
(rough inclusion) basic for rough mereology. The concept of inclu-
sion degree based on partial relation was proposed in [46] for
approximate reasoning in rough set theory. In the literature [40],
Xu and Liang presented three types of inclusion degrees (I0, I1

and I2), which have been successfully applied for characterizing
the measures from rough set theory. In the following, we discuss
the relationship between these three inclusion degrees and the
set distance.

A partial order on a set L is a binary relation � with the follow-
ing properties: x � x (reflexive), x � y and y � x imply x = y (anti-
symmetric), and x � y and y � z imply x � z (transitive) [40].
293

294

295

296
297

299299

300

301

302
Proposition 1. Let U be a finite set, F = {XjX # U} and # a partial
relation on F. For "X, Y 2 F, one define an inclusion degree as

I0ðY=XÞ ¼ jY \ Xj
jXj : ð2Þ

It is easy to see that I0 can be induced to a set distance

I0ðY=XÞ ¼ dðX; X 	 YÞ:

303

305305

306
Proposition 2. Let Y = {Y1,Y2, . . . ,Yn} be a classification of U,
F = {{F1,F2, . . . , Fn}jFi # Yi, i = 1,2, . . . ,n}, X = {X1,X2, . . . ,Xn} 2 F and
Z = {Z1,Z2, . . . , Zn} 2 F. One define another inclusion degree as
307

308

309

I1ðX=ZÞ ¼

Sn
i¼1Xi

� �
\
Sn

i¼1Zi
� ��� ��Sn

i¼1Zi
� ��� �� : ð3Þ
cite this article in press as: J. Liang et al., Distance: A more comprehensib
.1016/j.knosys.2011.11.003
From the formula, one can get the form of set distance of this
inclusion degree, which is
I1ðX=ZÞ ¼ d
[n

i¼1
Zi

� �
;
[n

i¼1
Zi

� �
	

[n

i¼1
Xi

� �� �
:

Theorem 1. Let F = {WjW # U} and P, Q # W. Let Y = {Y1,Y2, . . . ,Yn}
be a classification of U; F 0 ¼ F 01; F

0
2; . . . ; F 0n

� �
jF 0i # Yi; i ¼ 1;2;

�
. . . ;ng; X ¼ fX1;X2; . . . ;Xng 2 F 0 and Z = {Z1,Z2, . . . , Zn} 2 F0. If P ¼Sn

i¼1Xi and Q ¼
Sn

i¼1Yi, then I1(X/Z) is a special case of I0(P/Q).
Proof. From the existing condition P ¼
Sn

i¼1Xi and Q ¼
Sn

i¼1Yi.

I1ðX=ZÞ ¼
Sn

i¼1Xi
� �

\
Sn

i¼1Zi
� ��� ��Sn

i¼1Zi
� ��� �� ¼ jP \ Q j

jQ j ¼ I0ðP=QÞ:

Therefore, I1(X/Z) is a special case of I0(P/Q). h

From the above three propositions, it can been that three types
of inclusion degrees can be all induced to be the set distance.

3.2. Set distance, accuracy measure, rough measure and
approximation quality

As three classical measures, accuracy measure, rough measure
and approximation quality are three important measures in rough
set theory [17]. In this subsection, we investigate how to induce
these kinds of measures to the set distance.

Proposition 3. Let S = (U,A) be an information table, P # A and
X # U. The accuracy measure of rough set X with respect to P [17] is
defined as

aPðXÞ ¼
jPXj
jPXj

; ð4Þ

where X – Ø.

It is easy to show that

aPðXÞ ¼
jPX \ PXj
jPXj

¼ dðPX; PX 	 PXÞ:

This shows that this measure can be induced to a set distance.

Proposition 4. Let S = (U,A) be an information table, P # A and
Y = {Y1,Y2, . . . ,Yn}. By P-lower and P-upper approximation of Y in S we

mean sets PY = {PY1,PY2, . . . ,PYn} and PY ¼ fPY1; PY2; . . . ; PYng,
respectively. The approximation quality of the classification Y with
respect to P [17] is defined as

rPðYÞ ¼
Pn

i¼1jPYij
jUj : ð5Þ

From the formula and Proposition 4, one can know that the
measure

rPðYÞ ¼
jU \

Sn
i¼1PYij
jUj ¼ dðU; U 	

[n

i¼1
PYiÞ

is also a set distance.

Proposition 5. Let S = (U,A) be an information table, P # A and
X # U. The rough measure of rough set X with respect to P [17] is
defined as
le perspective for measures in rough set theory, Knowl. Based Syst. (2011),
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qPðXÞ ¼ 1	 aPðXÞ ¼ 1	 jPXj
jPXj

; ð6Þ

where X – Ø.

It is easy to show that

qPðXÞ ¼ dðPX; PXÞ:

It implies that this measure also can be induced to a set distance.
The above three examples show approximation accuracy, rough

measure and approximation quality can be all characterized by the
set distance. In addition, from Proposition 6, it is easy to know that
the measure of dependency between two attributes subsets also
can be induced to a set distance.

3.3. Set distance and fuzziness measure of a rough set

In this subsection, we will research the set distance character-
ization of the fuzziness measures of a rough set and a rough
decision.

Proposition 6. Let S = (U,A) be an information table and X # U. For
any object x 2 U, the membership function of x in X is defined as

lA
XðxÞ ¼

jX \ ½x�Aj
j½x�Aj

; ð7Þ

where lA
XðxÞ 0 6 lA

XðxÞ 6 1
� �

represents a fuzzy concept [36].

Obviously, the membership function can be redefined by the
following set distance

lA
XðxÞ ¼ dð½x�A; ½x�A 	 XÞ:

It can construct a fuzzy set FA
X ¼ fðx;lXðxÞÞjx 2 Ug on the universe U.

Proposition 7. Let S = (U,A) be an information table and X # U. A
fuzziness measure of the rough set X is defined as [21]

E FA
X

� �
¼
XjUj
i¼1

lA
XðxÞ 1	 lA

XðxÞ
� �

: ð8Þ

Through using the result of Proposition 6, it is obvious that

E FA
X

� �
¼
XjUj
i¼1

dð½x�A; ½x�A 	 XÞð1	 dð½x�A; ½x�A 	 XÞÞ:

That is to say, the fuzziness measure also can be characterized by
the set distance.

Proposition 8. Let S = (U,A) be an information table and U/
D = {Y1,Y2, . . . ,Yn} a target decision. For any x 2 U, the membership
function of x in D is defined as [13]

lDðxÞ ¼
jYj \ ½x�Aj
j½x�Aj

; x 2 Yj; ð9Þ

where lD(x) (0 6 lD(x) 6 1) represents a fuzzy concept.

Similar to Proposition 6, the membership function can be in-
duced to the set distance

lDðxÞ ¼ dð½x�A; ½x�A 	 YjÞ; x 2 Yj:

It can construct a fuzzy set FA
D ¼ fðx;lDðxÞÞjx 2 Ug on the universe U.

Based on this membership function, one can construct a fuzziness
measure of a rough decision.
Please cite this article in press as: J. Liang et al., Distance: A more comprehensib
doi:10.1016/j.knosys.2011.11.003
Proposition 9. Let S = (U,A) be an information table and U/D =
{Y1,Y2, . . . ,Yn} a target decision. A fuzziness measure of a rough
decision is defined as [21]

E FA
D

� �
¼
XjUj
i¼1

lDðxiÞð1	 lDðxiÞÞ: ð10Þ

It can be depicted by the set distance

E FA
D

� �
¼
Xn

j¼1

dð½x�A; ½x�A 	 YjÞð1	 dð½x�A; ½x�A 	 YjÞÞ:

From the above four propositions, one know that membership
functions and fuzziness measures can be induced to be a set dis-
tance in rough set theory. These cases will be helpful for under-
standing the fuzziness of a rough set and a rough decision by
using set distance.

3.4. Set distance and decision performance evaluation

In recent years, how to evaluate the decision performance of a
decision rule and a decision-rule set has become a very important
issue in rough set theory. Firstly, we concern on two classical
evaluation measures, which are certainty measure and coverage
measure.

Let S = (U,C [ D) be a decision table, Xi 2 U/C, Yj 2 U/D and
Xi \ Yj – Ø. By des (Xi) and des (Yj), we denote the descriptions of
the equivalence classes Xi and Yj in the decision table S [17]. A deci-
sion rule is formally defined [?]

Zij : desðXiÞ ! desðYjÞ:
Proposition 10. Let S = (U,C [ D) be a decision table, Xi 2 U/C, Yj 2 U/
D and Xi \ Yj – Ø. Certainty measure (also called resolution) of the
rule Zij is defined as [37]

aXi
ðYjÞ ¼

jYj \ Xij
jXij

: ð11Þ

From the definition of certainty measure, it is easy to see that
the formula (11) can be depicted by a set distance

aXi
ðYjÞ ¼ dðXi; Xi 	 YjÞ:
Proposition 11. Let S = (U,C [ D) be a decision table, Xi 2 U/C, Yj 2 U/
D and Xi \ Yj – Ø. Coverage measure (also called completeness) of the
rule Zij is defined as [37]

bXi
ðYjÞ ¼

jYj \ Xij
jYjj

: ð12Þ

From the denotation of coverage measure, it can be seen that
the formula (12) also can be characterized by a set distance

bXi
ðYjÞ ¼ dðYj; Yj 	 XiÞ:

Similar to the support measure of a decision rule sðZijÞ ¼
jYj\Xi j
jUj is also

induced to the set distance D(U,U 	 (Yj \ Xi)).
In order to assess the decision performance of a decision table,

Qian et al. [20] proposed three evaluation parameters a, b and c,
which are used to calculate the entire certainty, the entire consis-
tency and the entire support of decision rules based on elementary
sets from a given decision table.
le perspective for measures in rough set theory, Knowl. Based Syst. (2011),
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Proposition 12. Let S = (U,C [ D) be a decision table, and RULE = {-
Zij : des(Xi) ? des(Yj), Xi 2 U/C,Yj 2 U/D}. Certainty measure a of S is
defined as

aðSÞ ¼
Xm

i¼1

Xn

j¼1

jXi \ Yjj2

jUjjXij
; ð13Þ

where s(Zij) and l(Zij) are the certainty measure and support measure
of the rule Zij, respectively.

Through using Eq. (11), it easily follows that

aðSÞ ¼
Xm

i¼1

Xn

j¼1

dðXi; Xi 	 YjÞdðU; U 	 ðXi \ YjÞÞ:

That is to say, the certainty measure can be defined by two set dis-
tances. Similarly, one can apply the set distance for depicting the
following two evaluation criteria.
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Proposition 13. Let S = (U,C [ D) be a decision table, and RULE =
{Zij : des(Xi) ? des(Yj), Xi 2 U/C,Yj 2 U/D}. Consistency measure b of S
is defined as

bðSÞ ¼
Xm

i¼1

jXij
jUj 1	 4

jXij
XNi

j¼1

jXi \ YjjlðZijÞð1	 lðZijÞÞ
" #

; ð14Þ

where Ni is the number of decision rules by the condition class Xi and
l(Zij) is the certainty measure of the rule Zij.

If adopting the interpretation of set distance, one can obtain the
following denotation.

bðSÞ ¼ 1	 4
jUj

Xm

i¼1

XNi

j¼1

jXi \ YjjdðXi; Xi 	 YjÞð1	 dðXi; Xi 	 YjÞÞ:
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Proposition 14. Let S = (U,C [ D) be a decision table, and RULE =
{Zij : des(Xi) ? des(Yj), Xi 2 U/C, Yj 2 U/D}. Support measure c of S is
defined as

cðSÞ ¼
Xm

i¼1

Xn

j¼1

jXi \ Yjj2

jUj2
: ð15Þ

From the definition of set distance, it is clear that

cðSÞ ¼
Xm

i¼1

Xn

j¼1

d2ðU; U 	 ðXi \ YjÞÞ:

From the above these propositions, we also can use the set distance
to characterizing those evaluation measures of decision perfor-
mance in the context of incomplete decision tables.

3.5. Rough set framework based on set distance

In rough set theory, the characterization of a target concept is
approximated by the lower approximation and the upper approx-
imation. In order to better comprehend the idea from rough set
theory, in this subsection, we will apply the set distance for rede-
fining the concept of a rough set.

Given an equivalence relation R on the universe U and a subset
X # U. One can define a lower approximation of X and an upper
approximation of X by

RX ¼ fx 2 Ujdð½x�R; X \ ½x�RÞ ¼ 0g; ð16Þ
RX ¼ fx 2 Uj0 6 dð½x�R; X \ ½x�RÞ < 1g: ð17Þ
Please cite this article in press as: J. Liang et al., Distance: A more comprehensib
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This definition of the rough set, in fact, is equivalent to Pawlak’s
rough set. It can be understood from the following analysis.

In Pawlak’s rough set, when [x]R # X, the object x can be putted
into the lower approximation of X, and when [x]R \ X – Ø, the ob-
ject x can be putted into the upper approximation of X. From the
condition [x]R # X, we have that

½x�R # X () jðX \ ½x�RÞ \ ½x�RjjðX \ ½x�RÞ [ ½x�Rj
¼ 1() 1	 jðX \ ½x�RÞ \ ½x�RjjðX \ ½x�RÞ [ ½x�Rj
¼ 0() dð½x�R; X \ ½x�RÞ ¼ 0:

From [x]R \ X – Ø, we obtain that

½x�R \ X – Ø() 0 <
jðX \ ½x�RÞ \ ½x�Rj
jðX \ ½x�RÞ [ ½x�Rj

6 1() 0

6 1	 jðX \ ½x�RÞ \ ½x�RjjðX \ ½x�RÞ [ ½x�Rj
< 1() 0

6 dð½x�R; X \ ½x�RÞ < 1:

Similar to these two denotations, we come to the definitions of neg-
ative region and boundary region of a rough set as follows

NegRX ¼ fx 2 Ujdð½x�R; X \ ½x�RÞ ¼ 1g; ð18Þ
BnRX ¼ fx 2 Uj0 < dð½x�R; X \ ½x�RÞ < 1g: ð19Þ

These two Eqs. (18) and (19) also can be similarly proved according
to the analysis about Eqs. (16) and (17).

From Eqs. (16)–(19), it can be seen that the characterization of a
rough set only depends on the set distance between [x]R and
X \ [x]R. If the distance between the equivalence class [x]R and
X \ [x]R achieve the minimum value zero, then the equivalence
class must be included in the lower approximation of the target
concept. If the distance between them equal the maximum value
one, then the equivalence class must belong to the negative region.
The rest equivalence classes lie in the boundary region of the rough
set.

Example 1. Let U = {x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12} and R be
an equivalence relation induced by U/R = {{x1,x3}, {x2,x4,x5,x6},
{x7,x8,x9,x10}, {x11,x12}}. We have that

½x1�R ¼ ½x3�R ¼ fx1; x3g;
½x2�R ¼ ½x4�R ¼ ½x5�R ¼ ½x6�R ¼ fx2; x4; x5; x6g;
½x7�R ¼ ½x8�R ¼ ½x9�R ¼ ½x10�R ¼ fx7; x8; x9; x10g

and

½x11�R ¼ ½x12�R ¼ fx11; x12g:

Given a set X = {x1,x2,x3,x5,x6,x7,x8,x11,x12}. For Pawlak’s rough
set model, we can obtain the lower approximation and upper
approximation of X

RX ¼ fx 2 Uj½x�R # Xg ¼ fx1; x3g;
RX ¼ fx 2 Uj½x�R \ X – ;g ¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9; x10g;
NegRX ¼ U 	 RX ¼ fx11; x12g

and

BnRX ¼ RX 	 RX ¼ fx2; x4; x5; x6; x7; x8; x9; x10g:

For the above rough set framework based on the set distance,
we can calculate the following results

dð½x1�R; X \ ½x1�RÞ ¼ dð½x3�R; X \ ½x3�RÞ ¼ 1	 jðX \ ½x1�RÞ \ ½x1�Rj
jðX \ ½x1�RÞ [ ½x1�Rj

¼ 0;
le perspective for measures in rough set theory, Knowl. Based Syst. (2011),
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dð½x2�R; X \ ½x2�RÞ ¼ dð½x4�R; X \ ½x4�RÞ ¼ dð½x5�R; X \ ½x5�RÞ

¼ dð½x6�R; X \ ½x6�RÞ ¼ 1	 jðX \ ½x2�RÞ \ ½x2�Rj
jðX \ ½x2�RÞ [ ½x2�Rj

¼ 1	 3
4
¼ 0:25;

dð½x7�R; X \ ½x7�RÞ ¼ dð½x8�R; X \ ½x8�RÞ ¼ dð½x9�R; X \ ½x9�RÞ

¼ dð½x10�R; X \ ½x10�RÞ ¼ 1	 jðX \ ½x7�RÞ \ ½x7�Rj
jðX \ ½x7�RÞ [ ½x7�Rj

¼ 1	 2
4
¼ 0:5

and

dð½x11�R; X \ ½x11�RÞ ¼ dð½x12�R; X \ ½x12�RÞ ¼ 1	 jðX \ ½x11�RÞ \ ½x11�Rj
jðX \ ½x11�RÞ [ ½x11�Rj

¼ 1	 0 ¼ 1:

Furthermore, we have that

RX ¼ fx 2 Ujdð½x�R; X \ ½x�RÞ ¼ 0g ¼ fx1; x3g;
RX ¼ fx 2 Uj0 6 dð½x�R; X \ ½x�RÞ < 1g
¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9; x10g;

NegRX ¼ fx 2 Ujdð½x�R; X \ ½x�RÞ ¼ fx11; x12g

and

BnRX ¼ fx 2 Uj0 6 dð½x�R; X \ ½x�RÞ < 1g
¼ fx2; x4; x5; x6; x7; x8; x9; x10g:

From these above equations, it can be seen that the R-lower
approximation, R-upper approximation, R-negative region and R-
boundary region of X obtained by Pawlak’s rough set model are
the same as the ones achieved by the proposed rough set frame-
work based on the set distance. However, the rough set framework
based on the set distance seems more intuitive for understanding
the meaning of rough set approximation. That is to say, the set dis-
tance-based rough set model gives a more comprehensible
perspective.

According to the definition of set distance, one easily obtains
the following theorem.

Theorem 2. Let R be an equivalence relation on U and X # U a
subset. Then,

(1) X is a R-definable set iff dðRX;RXÞ ¼ 0;
(2) X is a R-rough set iff dðRX;RXÞ > 0.
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Proof. Similar to the proofs about Eqs. (16)–(19), this theorem can
be easily proved. h

With the introduction of rough inclusion, the standard approx-
imation space can be generalized to variable precision approxima-
tions. In formulating the variable precision rough set model, Ziarko
[46] used the relative degree of misclassification function c and the
granule based definition of approximation. In the variable rough
set framework, one needs to choose the threshold value b in the
range [0,0.5]. Given an equivalence relation R on the universe U
and a subset X # U. In variable rough set theory, through using
the set distance, a lower approximation of X and an upper approx-
imation of X can be redefined by

RbX ¼ fx 2 Ujdð½x�R; X \ ½x�RÞ 6 bg; ð20Þ
RbX ¼ fx 2 Uj0 6 dð½x�R; X \ ½x�RÞ < 1	 bg: ð21Þ
649
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Similar to these two denotations, we come to the definitions of
negative region and boundary region of a variable rough set as
follows

NegbX ¼ fx 2 Ujdð½x�R; X \ ½x�RÞP 1	 bg; ð22Þ
BnbX ¼ fx 2 Ujb < dð½x�R; X \ ½x�RÞ < 1	 bg: ð23Þ

When the threshold value b equals zero, a variable rough set
will degenerate into the corresponding Pawlak’s rough set. From
Eqs. (21)–(24), it can be seen that like the standard rough set,
the depiction of a variable rough set also depends on the set dis-
tance between [x]R and X \ [x]R. Clearly, the characterization of a
rough set by the set distance will be very helpful for more easily
understanding the essence and meaning of a rough set, which pro-
vides a more comprehensible perspective for measures from rough
set theory.

Example 2 (Continued from Example 1). Let b = 0.4, for Ziarko’s
variable precise rough set model, we can compute the lower
approximation and upper approximation of X are as follows

RbX ¼ fx 2 Uj1	 ½x�R \ X
½x�R

6 0:4g ¼ fx1; x2; x3 x4; x5; x6g;

RbX ¼ fx 2 Uj1	 ½x�R \ X
½x�R

< 0:6g ¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9; x10g

NegbX ¼ U 	 RX ¼ fx11; x12g

and

BnbX ¼ RX 	 RX ¼ fx7; x8; x9; x10g:

Using the proposed rough set framework based on the set dis-
tance, we obtain its lower approximation and upper approximation

RbX ¼ fx 2 Ujdð½x�R; X \ ½x�RÞ 6 0:4g ¼ fx1; x2; x3 x4; x5; x6g;
RbX ¼ fx 2 Uj0 6 dð½x�R; X \ ½x�RÞ < 0:6g

¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9; x10g;
NegbX ¼ fx 2 Ujdð½x�R; X \ ½x�RÞP 0:6 ¼ fx11; x12gg

and

BnbX ¼ fx 2 Uj0:4 < dð½x�R; X \ ½x�RÞ < 0:6g ¼ fx7; x8; x9; x10g:

From these above computations, it is easy to see that the R-
lower approximation, R-upper approximation, R-negative region
and R-boundary region of X obtained by VPRS are the same as
the ones achieved by the redefined VPRS based on the set distance,
respectively. Like the set distance-based rough set model, the rede-
fined VPRS play the same role for understanding the meaning of
rough set approximation in VPRS, which also displays a more com-
prehensible perspective.

In the literature [4], Cornelis et al. gone one step further by
introducing vague quantifiers like most and some into the model
VPRS. In this way, an element x belongs to the lower approxima-
tion of X if most of the elements related to x are included in X. Like-
wise, an element belongs to the upper approximation of X if some
of the elements related to x are included in X. In this approach, it is
implicitly assumed that the approximations are fuzzy sets, i.e.,
mappings from X to [0,1], that evaluate to what degree the associ-
ated condition is fulfilled. The authors formally define the upper
approximation and lower approximation of X by fixing a couple
of fuzzy quantifiers, which are also constructed based on the inclu-
sion degree. Hence, we also can employ the proposed set distance
for redefining so-called vaguely quantified rough set framework
proposed by Cornelis et al. Due to their similarity, we omit its form
based on the set distance.
le perspective for measures in rough set theory, Knowl. Based Syst. (2011),
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4. Partition distance and some measures in rough sets

In rough set theory, information entropy and knowledge granu-
lation are two main approaches to measuring the uncertainty of a
partition in knowledge bases (approximation spaces). If the knowl-
edge granulation (or information entropy) of one partition is equal
to that of the other partition, we say that these two partitions have
the same uncertainty. However, it does not mean that these two
partitions are equivalent. In other words, information entropy
and knowledge granulation cannot characterize the difference be-
tween any two partitions in a knowledge base. In this section, we
introduce a notion of partition distance to differentiate two given
partitions and investigate some of its important properties.

For our further development, we give several representations
and denotations. We say K = (U,R) is a knowledge base, where U
is a finite and non-empty set and R is a family of equivalence rela-
tions. In this paper, we denote an equivalence partition induced by
U/R on U by K(R). In fact, the partition can be formally defined as
K(R) = {ER(x)jx 2 U}. Each equivalence class ER(x)(x 2 U) may be
viewed as an information granule consisting of indistinguishable
elements [22].

4.1. Partition distance

To characterize the relationship among partitions, based on the
view of set distance, we introduce an approach called partition dis-
tance for measuring the difference between two partitions on the
same knowledge base in the following.

Definition 2. Let K = (U,R) be a knowledge base, P, Q 2 R,
K(P) = {[xi]Pjxi 2 U} and K(Q) = {[xi]Qjxi 2 U}. Partition distance
between K(P) and K(Q) is defined as

DðKðPÞ;KðQÞÞ ¼ 1
jUj

XjUj
i¼1

j½xi�Pa½xi�Q j
jUj ; ð24Þ

where j[xi]P
[xi]Qj = j[xi]P [ [xi]Qj 	 j[xi]P \ [xi]Qj.
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Theorem 3 (Extremum). Let K(U,R) be a knowledge base, K(P), K(Q)
two partitions on K. Then, D(K(P),K(Q)) achieves its minimum value
D(K(P),K(Q)) = 0 if K(P) = K(Q) and D(K(P),K(Q)) achieves its maxi-
mum value DðKðPÞ;KðQÞÞ ¼ 1	 1

jUj if K(P) = x and K(Q) = d (K(P) = d
and K(Q) = x).
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Proof. For "P,Q 2 R, one has that 1 6 j[xi]P \ [xi]Qj 6 jUj, 1 6
j[xi]P [ [xi]Qj 6 jUj. Therefore, for "P,Q 2 R,

0 6 j½xi�P 
 ½xi�Q j 6 jUj 	 1; i:e:; 0 6
1
jUj

XjUj
i¼1

j½xi�P 
 ½xi�Q j
jUj 6 1	 1

jUj :

If K(P) = K(Q), then [xi]P \ [xi]Q = [xi]P, [xi]P [ [xi]Q = [xi]P, i 6 jUj.
Hence, DðKðPÞ;KðQÞÞ ¼ 1

jUj
PjUj

i¼1
j½xi �P
½xi �Q j
jUj ¼ 1

jUj
PjUj

i¼1
0
jUj ¼ 0, i.e., D(K(P),

K(Q)) achieves its minimum value 0.
If K(P) = x and K(Q) = d, then [xi]P \ [xi]Q = {xi}, [xi]P [ [xi]Q = U,

i 6 jUj. Hence, DðKðPÞ;KðQÞÞ ¼ 1
jUj
PjUj

i¼1
j½xi �P
½xi �Q j
jUj ¼ 1

jUj
PjUj

i¼1
jUj	jxi j
jUj

¼ 1	 1
jUj, i.e., D(K(P),K(Q)) achieves its maximum value 1	 1

jUj. h

The partition distance represents the measure of difference be-
tween two partitions in the same knowledge base. Obviously,
0 6 DðKðPÞ;KðQÞÞ 6 1	 1

jUj.

Let K(P) = {[xi]Pjxi 2 U}, K(Q) = {[xi]Qjxi 2 U} and K(R) = {[xi]Rjxi 2 U}
be three partitions on U. For [xi]P 2 K(P), [xi]Q 2 K(Q) and [xi]R 2 K(R),
xi 2 U, we denote [xi]{(P,Q,R)} = [xi]P [ [xi]Q [ [xi]R. One can give a certain
Please cite this article in press as: J. Liang et al., Distance: A more comprehensib
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array of all elements in [xi]P[Q[R and denote the array by
Array ¼ ðxi1 ; xi2 ; . . . ; xij½xi �P[Q[R j

Þ. Therefore, one can represent [xi]P

by the following array

xik ¼
1 if xik 2 ½xi�P;
0 else;

	

for xik 2 Array; k 6 j½xi�P[Q[Rj.
Similarly, the expressions of [xi]Q and [xi]R also can be obtained.

In fact, the expression of Array is various, so the expression of [xi]P,
[xi]Q and [xi]R should be also changed according to Array, respec-
tively. This kind of representations about the equivalence classes
are illustrated by the following proposition.

Example 3. Consider three equivalence classes [xi]P = {1,2,3},
[xi]Q = {2,3,4} and [xi]R = {3,4,5}. Compute the expressions of [xi]P,
[xi]Q and [xi]R through using the above method.

By computing, one has that [xi]{(P,Q,R)} = [xi]P [ [xi]Q [ [xi]R =
{1,2,3,4,5}. Assume that Array = (1,2,3,4,5).

For [xi]P, one can obtain that [xi]P = (1,1,1,0,0). Similarly, it
follows that [xi]Q = (0,1,1,1,0) and[xi]R = (0,0,1,1,1).

Let A, B, C be three classical sets, Array = (t1, t2, . . . , tj{(A,B,C)}j),
ti – tj, ti, tj 2 A [ B [ C. Hence, from the above expression method,
one can get the array expressions of A, B and C as follows

A0 ¼ ða1; a2; . . . ; ajfðA;B;CÞgjÞ;

B0 ¼ ðb1; b2; . . . ; bjfðA;B;CÞgjÞ and

C 0 ¼ ðc1; c2; . . . ; cjfðA;B;CÞgjÞ:

Based on these denotations, we then measure the distance between
two classical sets by the following formula

d0ðA;BÞ ¼
XjfðA;B;CÞgj
i¼1

ðai 
 biÞ; ai 2 A0; bi 2 B0: ð25Þ

Analogously, one has that d0ðB;CÞ ¼
PjfðA;B;CÞgj

i¼1 ðbi 
 ciÞ and

d0ðA;CÞ ¼
PjfðA;B;CÞgj

i¼1 ðai 
 ciÞ.
From these denotations, we come to the following lemma.

Lemma 1. Let A, B, C be three classical sets, then d0(A,B) + d0(B,C) P
d0(A,C).
Proof. Suppose that A0 = {a1,a2, . . . ,aj{(A,B,C)}j},B0 = {b1,b2, . . . ,bj{(A,B,C)}j}
and C0 = {c1,c2, . . . ,cj{(A,B,C)}j}. From (ai 
 bi) 
 (bi 
 ci) P (ai 
 ci), it
follows that

d0ðA;BÞ þ d0ðB;CÞ ¼
XjfðA;B;CÞgj
i¼1

ðai 
 biÞ þ
XjfðA;B;CÞgj
i¼1

ðbi 
 ciÞ

¼
XjfðA;B;CÞgj
i¼1

ððai 
 biÞ 
 ðbi 
 ciÞÞP
XjfðA;B;CÞgj
i¼1

ðai 
 ciÞ

¼ d0ðB;CÞ:

Similarly, d0(A,B) + d0(A,C) P d0(B,C) and d0(A,C) + d0(B,C) P
d0(A, B). h
Theorem 4. Let K(U) be the set of all partitions induced by U, then (K
(U),D) is a distance space.
Proof

(1) One can obtain easily that D(K(P),K(Q)) P 0 from
Definition 2.

(2) It is obvious that D(K(P),K(Q)) = D(K(Q),K(P)).
le perspective for measures in rough set theory, Knowl. Based Syst. (2011),
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(3) For the proof of the triangle inequality principle, one only
need to prove that D(K(P),K(Q)) + D(K(P),K(R)) P D(K(Q),
K(R)), K(P),K(Q),K(R) 2 K(U).

From Lemma 1, we know that for xi 2 U, d0([xi]P, [xi]Q) + d0([xi]P,
[xi]R) P d0([xi]Q, [xi]R). Hence,

DðKðPÞ;KðQÞÞ þ DðKðPÞ;KðRÞÞ

¼ 1
jUj

XjUj
i¼1

j½xi�P 
 ½xi�Q j
jUj þ 1

jUj
XjUj
i¼1

j½xi�P 
 ½xi�Rj
jUj

¼ 1
jUj

XjUj
i¼1

d0ð½xi�P; ½xi�Q Þ
jUj þ 1

jUj
XjUj
i¼1

d0ð½xi�P ; ½xi�RÞ
jUj

¼ 1
jUj

XjUj
i¼1

1
jUj ðd

0ð½xi�P; ½xi�Q Þ þ d0ð½xi�P ; ½xi�RÞÞ

P
1
jUj

XjUj
i¼1

d0ð½xi�Q ; ½xi�RÞ
jUj

¼ 1
jUj

XjUj
i¼1

DðKðQÞ;KðRÞÞ:

Therefore, (K(U),D) is a distance space. h

From the above theorem, one can draw a conclusion that the
partition distance is also distance metric.

For further development, we give the following Lemma 2.

Lemma 2. Let A, B, C be three classical sets with A # B # C or
A � B � C, then d0(A,B) + d0(B,C) = d0(A,C).
808

809
810
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816
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Proof. Suppose that A0 = {a1,a2, . . . ,aj{(A,B,C)}j},B0 = {b1,b2, . . . ,bj{(A,B,C)}j}
and C0 = {c1,c2, . . . ,cj{(A,B,C)}j}. Let A � B � C, thus A [ B [ C = A and
B [ C = B. Therefore,

d0ðA;BÞ þ d0ðB;CÞ ¼
XjfðA;B;CÞgj
i¼1

ðai 
 biÞ þ
XjfðA;B;CÞgj
i¼1

ðbi 
 ciÞ

¼ ðjA [ Bj 	 jA \ BjÞ þ ðjB [ Cj 	 jB \ CjÞ
¼ ðjAj 	 jBjÞ þ ðjBj 	 jCjÞ ¼ jAj 	 jCj

¼
XjfðA;B;CÞgj
i¼1

ðai 
 ciÞ ¼ d0ðA;CÞ:

For A # B # C, similarly, one can draw the same conclusion. h

By Definition 2 and Lemma 2, one can obtain the following
theorem.

Theorem 5. Let K = (U,R) be a knowledge base, P,Q,R 2 R and
K(P) � K(Q) � K(R) or K(R) � K(Q) � K(P). Then, D(K(P),K(R))
= D(K(P),K(Q)) + D(K(Q),K(R)).
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Proof. For K(P),K(Q),K(R) 2 K and K(P) � K(Q) � K(R), one can eas-
ily get that [xi]P # [xi]Q # [xi]R, xi 2 U. Hence, it follows from
Lemma 2 that

DðKðPÞ;KðQÞÞ þ DðKðQÞ;KðRÞÞ

¼ 1
jUj

XjUj
i¼1

j½xi�P 
 ½xi�Q j
jUj þ 1

jUj
XjUj
i¼1

j½xi�Q 
 ½xi�Rj
jUj

¼ 1
jUj

XjUj
i¼1

d0ð½xi�P; ½xi�Q Þ
jUj þ 1

jUj
XjUj
i¼1

d0ð½xi�Q ; ½xi�RÞ
jUj
Please cite this article in press as: J. Liang et al., Distance: A more comprehensib
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¼ 1
jUj

XjUj
i¼1

1
jUj ðd

0ð½xi�P ; ½xi�Q Þ þ d0ð½xi�Q ; ½xi�RÞÞ

¼ 1
jUj

XjUj
i¼1

d0ð½xi�P ; ½xi�RÞ
jUj ¼ 1

jUj
XjUj
i¼1

DðKðPÞ;KðRÞÞ:

For K(R) � K(Q) � K(P), similarly, one can draw the same
conclusion. h
Example 4. Let U = {x1,x2,x3,x4,x5} and K(P), K(Q), K(R) be three par-
titions induced by equivalence relations P, Q, R on K, where
K(P) = {{x1,x2,x3}, {x1,x2,x3}, {x1,x2,x3}, {x4,x5}, {x4,x5}}, K(Q) =
{{x1,x2},{x1,x2}, {x3}, {x4,x5}, {x4,x5}} and K(R) = {{x1,x2}, {x1,x2}, {x3},
{x4}, {x5}}.

It is obvious that K(R) � K(Q) � K(P). By computing the partition
distances among them, one can obtain that

DðKðPÞ;KðQÞÞ ¼ 1
5

1
5
ð1þ 1þ 2þ 0þ 0Þ


 �
¼ 4

25
;

DðKðQÞ;KðRÞÞ ¼ 1
5

1
5
ð0þ 0þ 0þ 1þ 1Þ


 �
¼ 2

25
and

DðKðPÞ;KðRÞÞ ¼ 1
5

1
5
ð1þ 1þ 2þ 1þ 1Þ


 �
¼ 6

25
:

It is clear that DðKðPÞ;KðQÞÞ þ DðKðQÞ;KðRÞÞ ¼ 4
25þ 2

25 ¼ 6
25

¼ DðKðPÞ;KðRÞÞ.
As a result of the above discussions and analyses, we come to

the following corollary.

Corollary 1. Let K(U) be the set of all partitions induced by U and
K(P) a partition on K(U), then DðKðPÞ;KðdÞÞ þ DðKðPÞ;KðxÞÞ ¼ 1	 1

jUj.
831
Proof. Since K(x) � K(P) � K(d), one can obtain that

DðKðPÞ;KðdÞÞ þ DðKðPÞ;KðxÞÞ

¼ 1
jUj

XjUj
i¼1

j½xi�Pj 	 1
jUj þ 1

jUj
XjUj
i¼1

jUj 	 j½xi�Pj
jUj

¼ 1
jUj

XjUj
i¼1

j½xi�Pj 	 1þ jUj 	 j½xi�Pj
jUj ¼ 1

jUj
XjUj
i¼1

jUj 	 1
jUj ¼ 1	 1

jUj :

Obviously, DðKðPÞ;KðdÞÞ þ DðKðPÞ;KðxÞÞ ¼ 1	 1
jUj. h

Hence, the partition distance can characterize the difference be-
tween two partitions in knowledge bases.

4.2. Partition distance and information measure in information tables

An information measure can calculate the information content
of an information table [13,15]. Let S = (U,A) be a complete infor-
mation table, P # A, the information measure I(P) (I is an informa-
tion measure function) of K(P) should satisfy [7].

(1) I(P) P 0;
(2) if K(P) = K(Q), then I(P) = I(Q); and
(3) if K(P) � K(Q), then I(P) > I(Q).

For example, each of Shannon’s information entropy [28] and
Liang’s information entropy [14] is an information measure which
is used to measure the information content of a complete informa-
tion table.

In what follows, we establish the relationship between the par-
tition distance and information measure in information tables.
le perspective for measures in rough set theory, Knowl. Based Syst. (2011),
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Theorem 6. D(K(P),K(d)) is an information measure.
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Proof. Let K(d) = {[xi]dj[xi]d = U,xi 2 U} and K(P) = {[xi]Pjxi 2 U}.

(1) This distance D is clearly non-negative.
(2) If K(P) = K(Q), then D(K(P),K(d)) = D(K(Q),K(d)).
(3) We prove that if K(P) � K(Q), then D(K(P),K(d)) >

D(K(Q),K(d)).

Since the partition K(P) = {[xi]Pj[xi]P = U,xi 2 U} and K(P) � K(Q),
so [xi]P # [xi]Q # U, xi 2 U, and there exists x0 2 U such that
[x0]P � [x0]Q. Hence,

DðKðPÞ;KðdÞÞ ¼ 1
jUj

XjUj
i¼1

j½xi�P 
 Uj
jUj ¼ 1

jUj
XjUj
i¼1

jUj 	 j½xi�Pj
jUj

>
1
jUj

XjUj
i¼1

jUj 	 j½xi�Q j
jUj ¼ 1

jUj
XjUj
i¼1

j½xi�Q 
 Uj
jUj

¼ DðKðQÞ;KðdÞÞ;

That is D(K(P),K(d)) > D(K(Q),K(d)).
Summarizing the above, D(K(P),K(d)) is an information

measure. h
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4.3. Partition distance and information granularity in information
tables

As we know, information granularity, in a broad sense, is the
average measure of information granules of a partition in a given
knowledge base [43]. It can be used to characterize the classifica-
tion ability of a given partition. Liang and Qian [14] developed an
axiomatic definition of information granularity in information ta-
bles, which is defined as follows.

Definition 3. For any given information table S = (U,A), let G be a
mapping from the power set of A to the set of real numbers. We say
that G is an information granularity in S = (U,A) if G satisfies the
following conditions:

(1) G(P) P 0 for any P # A;
(2) G(P) = G(Q) for any P,Q # A if there is a bijective mapping

f: K(P) ? K(Q) such that j[xi]Pj = jf([xi]P)j, xi 2 U; and
(3) G(P) < G(Q) for any P, Q # A with K(P) � K(Q).
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Proof. Let K(x) = {[xi]xj[xi]x = {xi}, xi 2 U} and K(P) = {[xi]Pjxi 2 U}.

(1) This distance D is clearly non-negative.
(2) If K(P) = K(Q), then D(K(P),K(x)) = D(K(Q),K(x)).
(3) We prove that if K(P) � K(Q), then D(K(P),K(x)) <

D(K(Q),K(x)). From the partition K(x) = {{xi}jxi 2 U} and
K(P) � K(Q), one has that {xi} # SP(xi) # SQ(xi), xi 2 U,
and there exists x0 2 U such that [x0]P � [x0]Q. Therefore,
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DðKðPÞ;KðxÞÞ ¼ 1
jUj

XjUj
i¼1

jSPðxiÞ 
 fxigj
jUj ¼ 1

jUj
XjUj
i¼1

jSPðxiÞj 	 1
jUj

<
1
jUj

XjUj
i¼1

jSQ ðxiÞj 	 1
jUj ¼ 1

jUj
XjUj
i¼1

jSQ ðxiÞ 
 fxigj
jUj

¼ DðKðQÞ;KðxÞÞ;
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i.e., D(K(P),K(x)) < D(K(Q),K(x)).
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Summarizing the above, D(K(P),K(x)) is an information gran-
ularity measure. h
Remark 1. From the above analysis, we can briefly understand
information measure and information granularity by the partition
distance. The bigger the value of partition distance between a par-
tition and the finest partition is, and the higher the information
content of this partition is; the smaller the value of partition dis-
tance between a partition and the coarsest partition is, and the big-
ger the information granularity of this partition is. In other words,
the partition distance establishes the relationship between infor-
mation measure and information granularity, which provides a
more comprehensible perspective for uncertainty of an informa-
tion table.

4.4. Relative discussions

From the above subsections, it can be seen that the partition
distance can be used to information measure, which establishes a
significant bridge between the partition distance and information
entropy in the context of information tables. In this subsection,
we will discuss the relationship between the partition distance
and the heuristic functions based on information entropy for attri-
bute reduction in rough set theory.

In order to obtain all attribute reducts of a given data set,
Skowron [30] proposed a discernibility matrix method, in which
any two objects determine one feature subset that can distinguish
them. According to the discernibility matrix viewpoint, Qian et al.
[24,25] and Shao et al. [29] provided a technique of attribute
reduction for interval ordered information tables, set-valued or-
dered information tables and incomplete ordered information
systems, respectively. The above attribute reduction methods
are usually time consuming and intolerable to process large-scale
data. To support efficient attribute reduction, many heuristic
attribute reduction methods have been developed in rough set
theory, cf. [8–10,15,16,26,31–35,38]. Slezak [32,33] investigated
the relationships between information entropy, attribute cluster-
ing and attribute reduction. For convenience, from the viewpoint
of heuristic functions, we classify these attribute reduction meth-
ods into four categories: positive-region reduction, Shannon’s en-
tropy reduction, Liang’s entropy reduction and combination
entropy reduction.

(1) Positive-region reduction
Hu and Cercone [8] proposed a heuristic attribute reduction
method, called positive-region reduction, which keeps the
positive region of target decision unchanged. The literature
[9] gave an extension of this positive-region reduction for
hybrid attribute reduction in the framework of fuzzy rough
set. Jensen and Shen [11,12] proposed other extensions of
the positive-region reduction to obtain an attribute reduct
in the context of fuzzy rough set theory.

(2) Shannon’s entropy reduction
As Shannon’s information entropy was introduced to search
reducts in the classical rough set model [31], Wang et al. [34]
used its conditional entropy to calculate the relative attri-
bute reduction of a decision information table. In fact, sev-
eral authors also have used variants of Shannon’s entropy
or mutual information to measure uncertainty in rough set
theory and construct heuristic algorithm of attribute reduc-
tion in rough set theory [10,35,38]. Each of these reduction
methods keeps the conditional entropy of target decision
unchanged.

(3) Liang’s entropy reduction
le perspective for measures in rough set theory, Knowl. Based Syst. (2011),
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Liang et al. [15] defined a new information entropy to mea-
sure the uncertainty of an information table and applied the
entropy to reduce redundant features [16]. Unlike Shannon’s
entropy, this information entropy can measure both the
uncertainty of an information table and the fuzziness of a
rough decision in rough set theory. This reduction method
can preserve the conditional entropy of a given decision
table. In fact, the mutual information form of Liang’s entropy
also can be used to construct a heuristic function of an attri-
bute reduction algorithm.

(4) Combination entropy reduction
In general, the objects in an equivalence class cannot be dis-
tinguished each other, but the objects in different equiva-
lence classes can be distinguished each other in rough set
theory. Therefore, in a broad sense, the knowledge content
of a given attribute set can be characterized by the entire
number of pairs of the objects which can be distinguished
each other on the universe. Based on this consideration, Qian
and Liang [26] presented the concept of combination
entropy for measuring the uncertainty of information tables
and used its conditional entropy to select a feature subset.
This reduction method can obtain an attribute subset that
possesses the same number of pairs of the elements which
can be distinguished each other as the original decision
table. This measure focuses on a completely different point
of view, which is mainly based on the intuitionistic knowl-
edge content nature of information gain.

The above four attribute reduction methods provide four kinds
of feature subset selection approaches based on rough set theory.
Positive-region reduction is to keep the positive region of target
decision unchanged. From the viewpoint of partition distance, this
reduction method is not based on the idea of partition distance.
The other three kind of attribute reduction methods are all based
on so-called conditional entropy, which can be included in infor-
mation theory field. In a broad sense, owing to the conditional en-
tropy of condition attributes with respect to a given decision
attribute can be understood as the difference between the partition
induced by condition attributes and that induced by the decision
attribute. From this consideration, the partition distance between
the condition partition and the decision partition also can play
the same role. Hence, it may imply that there are some essential
relationships between the partition distance and each of those
heuristic functions based on conditional entropy. Owing to the
importance and complexity of this task, we will carefully investi-
gate the problem in our further study.
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5. Conclusion

The contribution of this paper has two facets. On one side,
through introducing a set distance to rough set theory, we have
investigated how to understand measures from rough set theory
in the viewpoint of distance, which are inclusion degree, accuracy
measure, rough measure, approximation quality, fuzziness mea-
sure, three decision evaluation criteria, information measure and
information granularity. Moreover, a rough set framework based
on the set distance is also a very interesting perspective for under-
standing rough set approximation. On the other side, we have
developed the concept of partition distance for calculating the dif-
ference between two partitions, and have used this partition dis-
tance to reveal the physical meanings of information entropy and
information granularity. From the view of distance, these results
look forward to providing a more comprehensible perspective for
measures in rough set theory.
Please cite this article in press as: J. Liang et al., Distance: A more comprehensib
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