
Accepted Manuscript

A stratified sampling based clustering algorithm for large-scale data

Xingwang Zhao, Jiye Liang, Chuangyin Dang

PII: S0950-7051(18)30458-1
DOI: https://doi.org/10.1016/j.knosys.2018.09.007
Reference: KNOSYS 4491

To appear in: Knowledge-Based Systems

Received date : 23 May 2018
Revised date : 3 September 2018
Accepted date : 6 September 2018

Please cite this article as: X. Zhao, et al., A stratified sampling based clustering algorithm for
large-scale data, Knowledge-Based Systems (2018), https://doi.org/10.1016/j.knosys.2018.09.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.knosys.2018.09.007

A stratified sampling based clustering algorithm for

large-scale data

Xingwang Zhaoa,b, Jiye Lianga,∗, Chuangyin Dangb

aKey Laboratory of Computational Intelligence and Chinese Information Processing of
Ministry of Education, School of Computer and Information Technology, Shanxi

University, Taiyuan, 030006, Shanxi, China
bDepartment of Systems Engineering and Engineering Management, City University of

Hong Kong, Hong Kong

Abstract

Large-scale data analysis is a challenging and relevant task for present-day
research and industry. As a promising data analysis tool, clustering is be-
coming more important in the era of big data. In large-scale data clustering,
sampling is an efficient and most widely used approximation technique. Re-
cently, several sampling-based clustering algorithms have attracted consider-
able attention in large-scale data analysis owing to their efficiency. However,
some of these existing algorithms have low clustering accuracy, whereas oth-
ers have high computational complexity. To overcome these deficiencies, a
stratified sampling based clustering algorithm for large-scale data is proposed
in this paper. Its basic steps include: (1) obtaining a number of representa-
tive samples from different strata with a stratified sampling scheme, which
are formed by locality sensitive hashing technique, (2) partitioning the chosen
samples into different clusters using the fuzzy c-means clustering algorithm,
(3) assigning the out-of-sample objects into their closest clusters via data
labeling technique. The performance of the proposed algorithm is compared
with the state-of-the-art sampling-based fuzzy c-means clustering algorithms
on several large-scale data sets including synthetic and real ones. The exper-
imental results show that the proposed algorithm outperforms the related
algorithms in terms of clustering quality and computational efficiency for

∗Corresponding author
Email addresses: zhaoxw84@163.com (Xingwang Zhao), ljy@sxu.edu.cn (Jiye

Liang), mecdang@cityu.edu.hk (Chuangyin Dang)

Preprint submitted to Knowledge-Based Systems September 3, 2018

*Revised Manuscript (Clean Version)
Click here to view linked References

large-scale data sets.

Keywords: Large-scale data, Fuzzy c-means algorithm, Stratified sampling,
Data labeling

1. Introduction

Clustering is an exploratory data analysis tool for discovering the under-
lying groups in the data. Its aim is to divide a set of unlabeled objects into
natural groups so that the data objects within each group share some similar-
ity and the data objects across different groups are different [1]. Clustering
analysis has numerous applications in such areas as customer segmentation,
target marketing, bioinformatics, social network analysis, and scientific data
analysis. In the past five decades, various clustering algorithms have been
developed in the literature in many different scientific disciplines. We refer
the reader to surveys of clustering algorithms and applications [2, 3, 4].

With the development of the internet of things, cloud computing, and
social networks, there has been a rapid increase in the volume of data [5].
The analysis of this large-scale data necessitates highly scalable clustering
techniques [6, 7, 8]. However, the traditional clustering algorithms cannot
be directly applied to large-scale data because of their high computation
time. Therefore, the biggest and most important challenge for large-scale
data clustering is how to improve the computational efficiency of the clus-
tering algorithms while maintaining the clustering quality. In the last few
decades, researchers have proposed some accelerated clustering algorithms
to cope with increasing scale of the data set [9, 10]. At the high level, there
are two kinds of pervasive solutions for large-scale data clustering: paral-
lel/distributed computation and data reduction schemes. This paper will
mainly focus on the latter solution.

In data reduction schemes, sampling is a systematic and cost-effective way
of reducing the data size while maintaining the essential properties of data.
A general framework for performing large-scale data clustering based on sam-
pling is shown in Fig. 1. Concretely speaking, the framework includes the
following procedures: (1) sampling a number of representative objects from
the original large-scale data, (2) generating the partial clustering results with
traditional clustering algorithms on the sampled data, and (3) attaining the
total clustering results by labeling remaining data objects with the partial
clustering results. The key points of sampling-based clustering algorithms

2

Large�scaleData SampledDataSampling
UnsampledData

Clustering PartialClusteringResults
TotalClusteringResultsData Labeling

Figure 1: A general framework of sampling-based clustering algorithm for large-scale
data.

are how to design an appropriate sampling scheme for choosing representa-
tive objects. They need to maintain the distribution characteristics of the
data set as much as possible. In order to achieve this goal, many cluster-
ing methods have been developed by combining traditional algorithms with
sampling. Based on the difference of the sampling scheme, these methods
can be classified as clustering algorithms with uniform random sampling,
progressive sampling, biased sampling and stratified sampling.

In uniform random sampling, every interesting object has the same prob-
ability to be sampled to form a representative subsample [11]. This sampling
technique has been widely used in clustering algorithms to accelerate large
data analysis. For example, the CURE (Clustering Using REpresentatives)
clustering algorithm is a hierarchical technique which uses uniform random
sampling to improve the computational efficiency [12]. This method firstly
draws a sample of the data set randomly and the new hierarchical clustering
is carried on the sampled data. The CLARANS (Clustering Large Appli-
cations based on Randomized Sampling) clustering algorithm also relies on
uniform sampling technique to decrease the search space and further speed
up the computation [13]. The RSEFCM (Random Sampling plus Extension
Fuzzy C-Means) algorithm forms a subsample of the original data with ran-
dom uniform sampling firstly and then uses the fuzzy c-means clustering
algorithm [14]. After yielding the partial cluster centers, each unsampled

3

object can be classified according to the cluster membership. The empirical
evaluation of the above mentioned uniform sampling-based algorithms shows
them to outperform clustering on the original entire data in terms of both
time and space efficiency. Unfortunately, uniform random sampling is not
always practical, due to a poor match between the sampling design and the
structure of data [17].

As an important sampling scheme, progressive sampling has been applied
to clustering analysis. In progressive sampling, an initial small sample of data
is used to form a clustering result. The size of the subsample is increased
gradually, with a new clustering result created each time and the subsample
grows in size. When a stopping criterion is meet, the technique terminates.
Domingos et al. [18] used Hoeffding bounds in a progressive sampling tech-
nique to both estimate the initial sample size and judge if the sample size at
any point in the progression was sufficient. Wang et al. [38] used progressive
sampling to select a subsample that accurately represents the dataset. A
divergence test was used to assess if the subsample matches the distribution
of the dataset. If the test failed, progressively larger subsamples were taken
until the test passed. Finally a clustering algorithm was run on the chosen
subsample. Parker and Holl [40] proposed a geometric progressive fuzzy c-
means (GOFCM) that leverages progressive sampling, Thompsons method
and a different stopping criterion. Concretely speaking, the initial subsample
size is estimated using Thompsons method. The size of subsequent subsam-
ples are calculated using a geometric schedule. The calculated size of the
subsample stops growing once it exceeds a user provided value. For large-
scale data clustering, one of the key principles of progressive sampling is to
design a reasonable termination condition.

Different from the above sampling method, the process of biased sampling
takes into account the probability information that a given point will be in-
cluded in the sample. When probability information is not taken into account
the sampling, it can be reduced to the uniform random sampling. Therefore,
it may be considered as a generalization of uniform random sampling [15].
Since the large-scale data usually have multi-scale densities and arbitrary
shape-based clusters, density-biased sampling is an appropriate method to
preserve the density. Biased sampling has been used extensively to clustering
analysis, in which the sampling probability is related to the neighborhood
density [17, 16]. Kollios et al. developed a clustering algorithm based on
density-biased sampling [17]. In this algorithm, whether a data point is sam-
pled or not depends on its kernel density. Palmer et al. proposed the biased

4

sampling-based algorithm using the hash technique [16]. This method firstly
divides the data space into equal-sized cells, and stores the data points in the
hash tables. Thereafter, sampling is biased by cell density. The cells with
few data points are over-sampled, whereas the cells with many data points
are under-sampled. Experimental results in [17, 16] show that the above
methods improve the clustering quality compared to uniform random sam-
pling. However, the computation of the probability information requires high
execution time, and may become infeasible for large-scale data clustering.

As a well-known sampling technique, stratified sampling conducted in
two steps, dividing the whole data set into disjoint groups called strata, and
then randomly sampling within each strata to select the representative ob-
jects [19]. In order to generate diversity and informative feature subsets for
dimensional data ensemble clustering, the authors firstly cluster the high-
dimensional features into a few feature groups called feature strata, and then
use stratified sampling to randomly sample features separately from feature
strata to form the feature subsets [20]. The experimental results have shown
that the ensemble clustering results with stratified sampling outperform the
results with random sampling. In all, compared with uniform random sam-
pling, progressive sampling and biased sampling, stratified sampling has both
higher computational efficiency and better clustering quality, which can be
considered as a generalization of biased sampling [21].

In order to increase the efficiency and effectiveness of clustering algo-
rithms, a fuzzy c-means clustering algorithm via stratified sampling plus
extension (abbr. SSEFCM) for large-scale data is developed in this paper.
Concretely speaking, the basic steps of the proposed method include: (1)
dividing the large-scale data into some groups called strata roughly using lo-
cality sensitive hashing technique, and randomly sampling objects separately
from different strata to form the representative samples, (2) partitioning the
chosen samples into different clusters with the fuzzy c-means clustering algo-
rithm, (3) assigning the out-of-sample objects into their closest clusters via
data labeling technique. Different from most of the existing sampling-based
clustering algorithms, the main innovation of the SSEFCM algorithm is it
takes into account the distribution of data sets in sampling. In the process of
stratified sampling, a data stratum containing a large fraction of the objects
or with large variance, should be sampled more objects to represent the orig-
inal data. This difference have the benefits of generating more representative
sample subsets and better partial clustering results. In experimental analy-
sis, a series of experiments have been carried on both synthetic data and real

5

data to evaluate the effectiveness and efficiency of the proposed algorithm in
terms of different indexes. These experiments show that the performance of
the proposed algorithm is better than that of the state-of-the-art sampling-
based fuzzy c-means clustering algorithms for large-scale data set.

The rest of this paper is organized as follows. Section 2 reviews the fuzzy
c-means clustering algorithm and related work on large-scale data clustering.
In Section 3, the details of the proposed algorithm based on stratified sam-
pling are presented. Experimental results are given and analyzed in Section
4. Finally, concluding remarks and future work are discussed in Section 5.

2. Fuzzy c-means algorithm and related work

In this section, the fuzzy c-means clustering algorithm [22] and related
work on large-scale data clustering are reviewed.

2.1. Fuzzy c-means clustering algorithm

Among the various fast clustering algorithms for large-scale data, one of
the most popular algorithm is the fuzzy c-means algorithm (FCM), which is
easy to implement, simple and efficient. Suppose that X = {x1,x2, · · · ,xN}
is a set of N objects. Each object xi = {xi,1, xi,2, · · · , xi,d} is characterized
by a set of d attributes or features. For a set of data objects xj ∈ Rd, j =
1, · · · , N , the FCM algorithm aims to find a partition represented as k fuzzy
clusters, while minimizing the cost function F , which is defined as the sum of
the squared distances between the data points and the corresponding centers
[3]. This can be posed as follows:

F (U,V) =
k∑

i=1

N∑

j=1

um
i,jD

2
i,j, (1)

subject to
uij ∈ [0, 1], 1 ≤ i ≤ k, 1 ≤ j ≤ N, (2)

k∑

i=1

ui,j = 1, 1 ≤ j ≤ N, (3)

and

0 <

N∑

j=1

ui,j < N, 1 ≤ i ≤ k, (4)

where

6

• U = [ui,j] is a k-by-N fuzzy matrix, and ui,j ∈ [0, 1] denotes the mem-
bership degree of the jth object to the ith cluster;

• V = [v1, · · · ,vk] is the cluster center matrix and vi = [vi,1, · · · , vi,d] is
the ith cluster center with d features;

• m ∈ [1,∞) is the fuzzy index. When m = 1, the FCM algorithm will
become the hard k-means clustering algorithm;

• Di,j = ‖xj − vi‖2 represents the Euclidean distance between the jth

object and the ith cluster center.

The above cost function F is normally optimized with an iterative pro-
cedure. The membership U and prototype matrix V are obtained by the
alternative optimization method. A more detailed discussion about the con-
vergence properties can be found in [22]. Its basic steps are described in the
following:

Step 1: Set the fuzzy parameter m, the number of clusters k, and termi-
nation criterion ε. Initialize the cluster centers matrix V randomly. Set step
variable t = 0;

Step 2: Update the membership matrix U by

u
(t+1)
i,j = 1/

k∑

h=1

[
Dh,j

Di,j

](2/(1−m))

, (5)

for i = 1, · · · , k, and j = 1, · · · , N ;
Step 3: Update the prototype matrix V by

v
(t+1)
i =

∑N
j=1

[
u
(t+1)
i,j

]m
xj

∑N
j=1

[
u
(t+1)
i,j

]m , (6)

for i = 1, · · · , k;
Step 4: Repeat steps 2-3 until ‖V(t+1) −V(t)‖ < ε.
Similar to most of the state-of-the-art clustering algorithms, the FCM al-

gorithm is a linear clustering algorithm, i.e., it assumes that the clusters are
linearly separable in the input space. It suffers from the issues of non-linear
separability and high-dimensional feature space. In order to tackle these
drawbacks, some improved fuzzy c-means algorithms, called kernel FCM al-
gorithms, are developed in the fields of machine learning and data mining
[14, 23].

7

2.2. Clustering algorithms for large-scale data

When talking about clustering analysis for large-scale data, the scalability
seems to be a “never-ending” challenge. In the following, the related work on
large-scale data clustering are briefly reviewed. Most of these methods involve
a preprocessing phase to compress or distribute the data, before clustering
is performed. According to preprocessing approaches, these studies can be
classified as follows:

• Sampling-based methods: These methods reduce the computation
time by first choosing a subset of the given data set, using only the
sampled subset to find the clusters, and then assigning the remaining
data points to the closest cluster. The methods mentioned in the intro-
duction section all belong to this category. The success of these tech-
niques depends on the premise that the selected representative objects
maintain the important structural information of the data. This paper
focuses on this kind methods for large-scale data clustering problem.

• Incremental methods: In order to cluster the data quickly, these
algorithms only scan the data points once. Bagirov et al. developed
a fast modified global k-means algorithm for incremental cluster con-
struction [24]. Wang et al. designed an incremental multiple medoids
based on fuzzy clustering algorithm for large relational data [25].

• Condensation-based methods: These methods speed up the effi-
ciency by encapsulating the data set into special data structures like
trees or graphs. After obtaining the data structures of large data,
the storage and the time of frequent operations are greatly reduced.
For instance, the BIRCH algorithm clusters the large-scale data set by
defining a clustering-feature tree structure [26].

• Divide-and-conquer methods: This methodology firstly divides the
large data into different subsets that can fit the main memory and then
the clustering algorithms are implemented on these subsets separately.
The final clustering results are yield by merging the partial clusters of
different subsets. The typical algorithms include [27], [28].

• Parallel methods: With the development of cloud computing, par-
allel processing techniques for clustering have gained popularity [29].
These techniques firstly divide the clustering task into a number of

8

independent sub-tasks which can be performed simultaneously. Then,
these solutions of sub-tasks are merged into the final clustering results.
For example, Ene et al. applied the Map-Reduce framework to speed
up the k-means and the k-medians clustering algorithms [29]. Recently,
a survey about big data clustering algorithms based on Map-Reduce
can be found in [30]. Although the parallel methods have a good po-
tential for clustering large-scale data, the implementation complexities
remain a great challenge.

3. The proposed algorithm

In this section, we present a stratified sampling-based clustering algo-
rithm, which is named Stratified Sampling plus Extension FCM (abbr. SSE-
FCM). Our aim is to improve the computational efficiency while maintaining
the clustering quality. Initially we give a process of the stratified sampling
method for large-scale data in details, and then describe the labeling scheme.
Finally, the runtime complexity of the proposed algorithm will be discussed.

3.1. Stratified sampling

In stratified sampling, data objects are grouped into relatively homoge-
neous subsets called strata, according to one certain property, and then a
representative set is selected from each stratum [20]. As a commonly used
technique for large-scale data analysis, stratification and sample allocation
are two key components in stratified sampling. The entire data set is divided
into disjoint strata with stratification schemes. In the process of sample allo-
cation, the sample size is determined and the sample set is drawn from each
stratum.

In the following, our stratification and sample allocation methods are
presented separately.

3.1.1. Stratification

In order to use stratified sampling, a large data set needs to be divided
into isolated strata that present certain level of homogeneity and the objects
within a stratum are similar to each other. As is well known, clustering
analysis is one kind of unsupervised learning methods. The difficulty lies
in how to find the appropriate stratification variable for clustering analysis
tasks. Thus, a simple and efficient technique should be used to achieve this
goal.

9

Locality-sensitive hashing (LSH) proposed in [31], is a randomized algo-
rithm that have been intensively studied and widely used in many different
fields due to its promising performance in both efficiency and accuracy [32].
Different from the conventional hashing algorithm in computer science that
avoids collisions (i.e., avoids mapping two objects into the same bucket), the
LSH method aims to maximize the probability of collision of similar objects
in the original metric space. Its basic idea is to use a set of hash functions
which store similar points in the same bucket with high probability, and
dissimilar points are stored in the same bucket with low probability. There-
fore, we employ the LSH method for data stratification due to its effective
proximity preserving properties.

Formally, the stratified scheme using the LSH method to generate dif-
ferent groups can be described as follows. Given a data set X with N ob-
jects in a d-dimensional features space Rd, we use a set of hash functions
H = {h1, · · · , hM} to compute a M-bit binary code y = {y1, · · · , yM} for
x ∈ X as

y = {h1(x), · · · , hM(x)}, (7)

where the gth bit is computed as yg = hg(x). The hash function performs
the mapping as hg : Rd −→ B. Such a binary encoding process can also be
viewed as mapping the original data point to a binary valued space. For a
data point x ∈ X, the hash function hg ∈ H based on p-stable distributions
is defined as [33]

hg(x) =

⌊
wg

Tx + bg
rg

⌋
mod 2, (8)

wherewg ∈ Rd is a random vector with each value chosen independently from
a Gaussian distribution, and bg ∈ R is a real number chosen uniformly from
the range [0, rg) where rg is the window size. Note that the hash function
given by Eq. (8) generates the code as hg(x) ∈ {0, 1}. That is to say, after
the hashing process, each object will obtain M-bit binary codes. Therefore,
one can have at most L = 2M different labels of original data, i.e., L strata.
After such transformation, two similar points in the Euclidean space, e.g.,
x and y, have a high probability to be located into the same stratum. The
strata could be used as approximate clustering results. In order to balance
the tradeoff between accuracy and computational efficiency, the number of
strata L is set to be the same as the number of clusters k in the experiments,
i.e., M = ⌈log2(k)⌉.

10

Table 1: An example of LSH scheme

X h1 h2 h3

x1 0 0 1
x2 0 1 0
x3 0 0 1
x4 1 0 0
x5 1 0 0
x6 1 0 0
x7 0 1 1
x8 0 1 1

Table 2: Stratification created by H for data X

Stratification Label Objects
001 {x1, x3}
010 {x2}
011 {x7, x8}
100 {x4, x5, x6}

In the following, taking the data in Table 1 as an example, we briefly
illustrate the LSH working scheme. Let X be a data set containing eight
objects, and H = {h1, h2, h3} be a set of hash functions. According to Eq.
(8), after the hashing process, suppose that each object will obtain 3-bit
binary codes shown in Table 1. Therefore, after such transformation, the
data X will be divided into four strata shown in Table 2.

3.1.2. Sample allocation

The methods of sample allocation in stratified sampling can be classified
into uniform, proportional, and optimal [35]. In the following, the optimal
approach will be used to determine the size of each stratum, because it
considers the stratum size and the objects variability among each stratum
at the same time. After stratifying objects by locality-sensitive hashing, we
assume that the data set X with N objects is divided into several disjoint
subsets or strata, denoted by {S1, . . . , SL}, where

⋃L
l=1 Sl = X, Sl

⋂
Sh =

11

∅(1 ≤ l, h ≤ L, l 6= h).
Firstly, according to some related concepts and formulas in sampling the-

ory, the number of objects needed to be sampled, n, can be calculated from
[34]

n =
(
∑L

l=1Nlσl)
2

σ2 +
∑L

l=1Nlσ2
l

, (9)

where Nl and σl are the number and standard deviation of objects in the
stratum Sl , respectively; σ

2 is the variance of the total data set. In fact, if
sample size n is larger than 5% of the total data size N , the sample size n
needs to be adjusted. In [34], the above formula is adjusted to reduce the
sample size with the finite population corrections, which is defined as follows

n′ =
n

1 + n/N
. (10)

For the sake of simplicity, the sample size is still denoted as n in the
following discussion. Then, the question is how to determine the sample size
of each stratum so as to minimize the variance of sampled objects Xs, subject
to the constraint

∑L
l=1 nl = n. Formally, the problem of sample allocation is

solved by

minVar(Xs) =

L∑

l=1

W 2
l σ

2
l

nl
,

s.t.
L∑

l=1

nl = n,

(11)

where Wl =
Nl

N
is the proportion of objects in the stratum Sl to the whole

data set X ; σl denotes the standard deviation of objects in the lth stratum;
nl denotes the number of data objects drawn from the lth stratum. An
application of the Lagrangian method yields the optimal sample allocation
strategy

nl =
nWlσl∑L
l=1Wlσl

. (12)

This formula implies that the strata with large Wlσl should be sampled
heavily. A large Wl indicates that a stratum contains a large fraction of the
objects, so more objects should be selected to represent the lth stratum. If
σl is large, the values of objects in this stratum are quite spread. And in

12

order to reflect the variability of objects in the lth stratum, a relatively large
number of objects should be used.

To see the advantages of stratified sampling via the optimal allocation
scheme, we compare its variance with that of sampled data under uniform
random sampling. In terms of variance, it is well known that the stratified
sampling with optimal allocation performs better than that with proportional
allocation [35], in which the sample size of each stratum is proportional to
the number of objects in this stratum. That is to say, the variance of sampled
data with proportional allocation is larger than that with optimal allocation
[35]. So, it suffices to just compare the variance under uniform random sam-
pling with that under stratified sampling via proportional allocation scheme.
Let µ and σ2 be the mean and variance of the whole data, and Xr be the
data set sampled from X using uniform random sampling. The variance
under uniform random sampling can be formulated as

Var(Xr) =
σ2

n

=
1

n

1

N

L∑

l=1

Nl∑

i=1

(xi,l − µ)2

=
1

n

L∑

l=1

Wlσ
2
l +

1

n
Wl(µl − µ)2.

(13)

And the variance of the sampled data under stratified sampling with propor-
tional allocation can be formulated as

Var(Xs) =
L∑

l=1

W 2
l

σ2
l

nl

=

L∑

l=1

W 2
l

σ2
l

nWl

=
1

n

L∑

l=1

Wlσ
2
l .

(14)

From these equations, one observe that stratified sampling with pro-
portional allocation always yields a smaller variance than uniform random
sampling does. Thus, stratified sampling with optimal allocation attains a

13

smaller variance than uniform random sampling does. Therefore, the sam-
pled data set obtained by stratified sampling is more representative to the
whole data set than that obtained by uniform random sampling.

3.2. Out-of-sample extension

In the sampling-based clustering algorithms, one of the most important
issues is how to assign the out-of-sample data into one of the previously
determined clusters. Among the different extension methods, the nearest
neighbor labeling is one of the most popular techniques due to its simplicity
and high efficiency. Suppose that the clustering results of the sampled data
set Xs generated by the standardized FCM algorithm are Cs = {ĉ1, · · · , ĉk}
with cluster centers Vs = {v̂1, · · · , v̂k}. Given these partial clustering results,
the out-of-sample data point xi ∈ X −Xs is assigned to the corresponding
cluster ĉli by the following criterion

li = arg min
j=1,··· ,k

D(xi, v̂j), (15)

where D(xi, v̂j) =
√∑d

l=1(xi,l − v̂j,l)2 denotes the Euclidean distance be-

tween the data object xi and the cluster center v̂j , and d is the number of
features.

3.3. Algorithm description

Based on the stratified sampling, a new clustering algorithm for large-
scale data is developed, which is described in Algorithm 1.

14

Algorithm 1 The SSEFCM Algorithm

1: Input:
2: X = {x1,x2, · · · ,xN},xj ∈ Rd: N d-dimensional data points;

k: the number of clusters;
fPDA: maximum fraction of data to sample;
m: the fuzzy parameter in FCM;
ε: the termination criterion in FCM.

3: Output:
4: C = {c1, · · · , ck}: the clustering results of the data set X.
5: Method:
6: According to Eq. (8), partition the data into L strata using locality-

sensitive hashing;
7: According to Eq. (9), determine the sample size n;
8: if n > N × fPDA then
9: n = ⌈N × fPDA⌉
10: end if
11: According to Eq. (12), determine the number of objects nl drawn from

the lth stratum;
12: Sample nl objects from the lth stratum, respectively; and denote the

sampled data as Xs;
13: Cluster the sampled data Xs with the FCM algorithm, i.e., (Us,Vs) =

FCM(Xs, k,m, ε);
14: for x ∈ X−Xs do
15: Assign each object x to the corresponding cluster using Eq.(15);
16: end for

The time complexity of the SSEFCM algorithm is basically determined
by three parts: data stratifying, the sampled data clustering with the FCM
algorithm and data labeling for the out-of-sample data. In the first part, the
cost of applying the LSH technique on the input data set to obtain L strata is
T1 = O(Nd log2 L) [31], where N is the number of data points, d is the size of
features, and L is the number of strata. And the random sampling in strata
can be implemented in parallel. Then, the computational complexity in this
step is T2 = maxl=1,··· ,LO(Nl), where Nl is the number of objects in the lth

stratum. In the second part, the time complexity of partitioning the sampled
dataXs with the FCM algorithm is T3 = O(ndk2t) [22], where n is the sample
size, k is the number of clusters, and t is the number of iterations of the FCM

15

Table 3: Characteristics of the data sets

Data sets # objects # attributes # classes
5K2D15 [14] 5,000 2 15
3M2D5 [38] 3,000,000 2 5
Electricity [36] 45,312 8 2
MNIST [14] 70,000 784 10
Person Activity [37] 164,860 8 11
Skin Segmentation[37] 245,057 3 2
Covtype [14] 581,012 54 7
KDD99 [46] 4,898,431 41 2

algorithm on Xs. Finally, the computational complexity of data labeling is
T4 = O((N − n)k). Therefore, the total time complexity of the SSEFCM
algorithm is O(Nd log2 L) + maxl=1,··· ,LO(Nl) + O(ndk2t) + O((N − n)k).
Thus, the algorithm has linear time complexity with the size of the data set.

4. Experimental analysis

In the experiments, we compare the performance of our proposed algo-
rithm with that of the state-of-the-art sampling-based fuzzy c-means clus-
tering algorithms. Below we first explain the experimental setups for our
evaluation and then present and analyze the experimental results.

4.1. Experimental setups

4.1.1. Data sets

A number of experiments are carried on eight data sets, including two
synthetic data sets and six real data sets. The characteristics of the eight
data sets are shown in Table 3.

• 5K2D15: This is a synthetic data set, including 5,000 two dimensional
data objects, with 15 clusters [14]. The scatter plot of the data points
is shown in Fig. 2.

• 3M2D5: This data set was used in [38]. It is composed of 3, 000, 000
objects, which are drawn from a mixture of k = 5 bivariate normal
distributions. The components are as given by

16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: Scatter plot of 5K2D15 data set.

1
5
Gaussian

(
−3
−3

)(
1 0
0 0.2

)
+ 1

5
Gaussian

(
0
0

)(
1 0
0 1

)

+ 3
10
Gaussian

(
4
3

)(
0.1 0
0 1

)
+ 1

10
Gaussian

(
4
3

)(
0.5 0
0 1

)

+ 1
5
Gaussian

(
5
−2

)(
0.2 0
0 1

)
.

• Electricity: This data was collected from the Australian New South
Wales Electricity Market. In this market, prices are not fixed and are
affected by demand and supply of the market. The data set contains
45,312 objects. The class label identifies the change of the price relative
to a moving average of the last 24 hours.

17

• MNIST: This data set consists of 70,000 28 × 28 pixel handwritten
digits images, which is divided into 10 classes. Each pixel is described
by an integer value between 0 and 255. We normalize their values
into [0, 1] by dividing 255, and each image is represented with a 784-
dimensional features [14].

• Person Activity: This data set contains the recordings of five peo-
ple performing different activities. There are 164,860 objects and 11
classes. Each object is described by 8 features.

• Skin Segmentation: This data set is collected by randomly sampling
B,G,R values from face images of various age groups (young, middle,
and old), race groups (white, black, and asian), and genders obtained
from FERET database and PAL database. It consists of 245,057 sam-
ples divided into 50,859 skin samples and 194,198 is non-skin samples.

• Covtype: This data set consists of 54 cartographic attributes obtained
from U.S.Geological Survey and U.S. Forest Service. It has 7 classes
and 581,012 objects. It contains 10 quantitative features, 4 binary
wilderness area designation features, and 40 binary features [14].

• KDD99: This data set was used for the Third International Knowledge
Discovery and Data Mining Tools Competition. The KDD99 dataset
consists of 4,898,431 objects of 41 dimensional vectors and is labeled
data that specifies the attack type (normal or attack). Note that there
are many duplicated objects in this data. Before clustering the data,
for each group of duplicated objects, only one object is retained, and
the rest are deleted.

4.1.2. Compared clustering algorithms and parameters settings

The proposed SSEFCM algorithm is compared with the following state-
of-the-art sampling-based fuzzy c-means clustering algorithms on the above
data sets.

• Single Pass FCM (SPFCM) [39] firstly breaks the large data into
equally sized small groups by uniform random sampling, sequentially
processes these manageable chunks by the fuzzy c-means algorithm,
and then combines the clustering results from each group.

18

• Random Sampling plus Extension FCM (RSEFCM) [14] obtains
a random sample of the large data and the fuzzy c-means algorithm is
applied to the sampled data. Once cluster centers are returned from
the fuzzy c-means algorithm, the cluster membership µik can be used
for out-of-sample data to obtain the full data clustering results.

• Geometric Progressive FCM (GOFCM) [40] follows a similar pat-
tern of the SPFCM algorithm to handle with the large-scale data. Com-
pared to the SPFCM algorithm, the improvements consist of deter-
mining the initial subsample size using Thompson’s method, forming
subsequent subsamples with progressive sampling, and terminating the
algorithm with stopping criterion.

• Minimum Sample Estimate Random FCM (MSERFCM) [40]
is designed as an improvement to the RSEFCM algorithm. Specifically
speaking, the MSEERFCM algorithm firstly derive the initial subsam-
ple size using the Thompson’s method and find better initial clustering
centers for further clustering. Then, a second subsample is progres-
sively sampled from the original data and clustered with the clustering
centers obtained from the first subsample.

• Biased Sampling plus Extension FCM (BSEFCM) [17] uses bi-
ased sampling technology to obtain a subsample according to the local
density. The fuzzy c-means algorithm is carried on the subsample to get
partial clustering results. And the clustering results of out-of-sample
data are obtained via data labeling.

According to the preceding brief descriptions, we find that the SPFCM
and RSEFCM algorithms are based on uniform random sampling; the GOFCM
and MSERFCM algorithms are based on progressive sampling; the BSEFCM
algorithm is based on biased sampling. In the BSEFCM algorithm, before
conducting biased sampling, 10% objects are first randomly sampled to com-
pute the local density of the data set.

Obviously, the clustering result depends on both the sampling strategy
and the baseline clustering algorithm. Herein, for a fair comparison, the tra-
ditional fuzzy c-means clustering algorithm was used to partition the sampled
data. And the data labeling technology is used to classify the remaining data.

In all the experiments, only the sample size (fPDA) varies among 1%,
2.5%, 5%, 10% and 25%; the other parameters are kept fixed. For the fuzzy

19

c-means algorithm, we set the fuzzifier m = 2.0 and termination criterion
ε = 0.000001. All the parameters required by the GOFCM and MSERFCM
algorithms are set to be default as in [40]. How to automatically determine
the number of clusters k in a data set is a hard problem [41], which is beyond
the scope of this paper. Thus, we generally set it to the number of ground
truth classes in the data sets. Each experiment is composed of 20 trials,
and k data objects are chosen randomly as initial cluster centers for the first
subsample. The reported experimental results are the average values across
these 20 trials. All the experiments were carried on a workstation with
Intel Xeon CPU E5-2650@2.60 GHz and 128 GB of main memory, running
Microsoft Windows 7 Professional. All codes were written in the MATLAB
computing environment.

4.2. Evaluation criteria

Two kinds of metrics are used to assess the effectiveness and efficiency
of the algorithms. Firstly, three popular external criteria: Clustering Accu-
racy (CA), Adjusted Rand Index (ARI), and Normalized Mutual Information
(NMI), are used to evaluate the effectiveness of the clustering algorithms,
which measure the agreement of the clustering results produced by an algo-
rithm and the ground truth.

Suppose that C = {c1, c2, · · · , ck} and P = {p1, p2, · · · , pk′} represent
the clustering results and pre-defined classes of the data set with N objects,
respectively. k and k′ are the number of clusters C and classes P ; Ni,j is the
number of common objects of cluster ci and pre-defined class pj ; N

c
i is the

number of data points in cluster ci ; and Np
j is the number of data points in

class pj . Then the three popular external criteria are as follows.
• Clustering Accuracy (CA). CA measures the percentage of correctly

classified data points in the clustering solution compared to pre-defined class
labels. The CA is defined as

CA =
Σk

i=1maxk
′

j=1Ni,j

N
. (16)

• Adjusted Rand Index (ARI). ARI takes into account the number of
objects that exist in the same cluster and different clusters [42]. The ARI is
defined as

ARI =
(N2)

∑k
i=1

∑k′

j=1(
Ni,j

2)− [
∑k

i=1(
Nc

i
2)

∑k′

j=1(
Np

j

2)]

1
2
(N2)[

∑k
i=1(

Nc
i

2) +
∑k′

j=1(
Np

j

2)]− [
∑k

i=1(
Nc

i
2)

∑k′
j=1(

Np
j

2)]
. (17)

20

• Normalized Mutual Information (NMI). This is one of the common ex-
ternal clustering validation metrics, which estimates the extent of the clus-
tering structure with the external classification information of the data [43].
Thus, NMI is defined as

NMI =

∑k
i=1

∑k′

j=1Ni,j log
N ·Ni,j

Nc
i ·N

p
j√∑k

i=1N
c
i · log

Nc
i

N
·∑k′

j=1N
p
j · log Np

j

N

. (18)

The maximum value of the three external criteria is 1. If the clustering
structure is close to the true class structure, then the values of them are high.
The higher the values of the three measures for a clustering result, the better
the clustering performance is.

On the other hand, the efficiency of the algorithms is measured in terms
of running time and speedup ratio. The running time is recorded by CPU
time. And, speedup ratio is described as follows.

• Speedup Ratio (SR). This criterion computes the ratio of running times
between the sampled-based algorithms and the traditional fuzzy c-means
clustering algorithm. If TFCM is the runtime of fuzzy c-means clustering
algorithm and TSA is the time for the sampled-based algorithm. Then, the
SR is calculated as

SR =
TFCM

TSA
. (19)

Note that the reported values of three external criteria for each algo-
rithm are based on full data partitions. Unless otherwise noted, the reported
CPU time and speedup ratio comparisons below include the running time
for sampling, the fuzzy c-means clustering algorithm on subsample, and data
labeling for out-of-sample objects.

4.3. Results on effectiveness analysis

Tables 4, 5 and 6 show the comparative results in terms of CA, ARI and
NMI on the five data sets, respectively. For each data set, the maximum and
second maximum values are highlighted in boldface. In addition, a value is
marked ‘-’ when the clustering result of the BSEFCM algorithm is not ob-
tainable. Note that the CA values of different algorithms on Electricity, Skin
Segmentation, and KDD99 are same. Thus, the maximum and second maxi-
mum values are not highlighted in boldface for these three data. Firstly, the
results of clustering accuracy (CA) on the eight data sets are shown in Table

21

4. The results show that the SSEFCM algorithm outperforms SPFCM, RSE-
FCM, and MSERFCM algorithms on most of the data sets under different
sampling ratios and has comparable results with the GOFCM algorithm on
5K2D15. These results indicate that the SSEFCM algorithm achieves higher
or comparable clustering accuracy than the other sample-based algorithms.
The results of the BSEFCM algorithm on the Person Activity data set is bet-
ter than that of other algorithms. Again, we see that the SSEFCM algorithm
usually has smaller standard deviations than that of SPFCM, RSEFCM, and
MSERFCM algorithms. This reflects that compared with all the other al-
gorithms, the SSEFCM algorithm has more robustness for large-scale data
clustering. Furthermore, it can be seen that the accuracy values on MNIST,
Person Activity and Covtype data sets are lower than the values on 5K2D15
and 3M2D15. This phenomenon also appears in some prior work on the same
data set [14], [25]. Surprisingly, even under a low sampling ratio, the SSE-
FCM algorithm generates better results than under a higher sampling ratio.
For example, on the Covtype data set, the CA value is 0.5190 when the
sampling ratio is equal to 2.5%, whereas the CA values are 0.5149, 0.5127,
and 0.5152 for sampling ratios of 5%, 10%, and 25%, respectively. It may
be due to that a small portion of representative sample may be enough to
effectively reveal the inherent clustering structure, while the introduction of
more objects will have a slightly negative impact on the clustering algorithm.
The results of ARI and NMI in Tables 5 and 6 possess a similar pattern as
that of CA. For the clustering results on Electricity, Skin Segmentation, and
KDD99, the advantages of these algorithms can not be distinguished from
CA index. However, the effectiveness of the SSEFCM algorithm with the
other algorithms is obvious in term of ARI and NMI indices.

4.4. Results on efficiency analysis

The following experiments is used to show the time efficiency of the pro-
posed algorithm for large-scale data clustering. Firstly, the CPU times (20
run averages) of all the algorithms are listed in Table 7. The minimum
and second minimum values for each data are shown in bold. As evident
from Table 7, the SSEFCM algorithm is the fastest algorithm on most of
the data sets. As previously mentioned the BSEFCM algorithm is the most
time-consuming algorithm. In addition, the running time of each of these
algorithms increases with the increasing of the sampling ratio for the same
data set. However, this relationship is not strictly monotonic. And some
sampling-based algorithms take more time than the FCM algorithm on some

22

Table 4: CA values (means ± std) of different algorithms on eight data sets

Data sets fPDA SPFCM RSEFCM GOFCM MSERFCM BSEFCM SSEFCM

1% 0.6083 ± 0.0783 0.8442 ± 0.0571 0.9391 ± 0.0356 0.9746 ± 0.0316 0.9377 ± 0.0368 0.9727 ± 0.0379

2.5% 0.9737 ± 0.0340 0.9121 ± 0.0429 0.9785± 0.0344 0.9770 ± 0.0309 0.9317 ± 0.0297 0.9729 ± 0.0560

5K2D15 5% 0.9712 ± 0.0298 0.9343 ± 0.0421 0.9735± 0.0316 0.9640 ± 0.0383 0.9494 ± 0.0439 0.9731 ± 0.0428

10% 0.9725 ± 0.0272 0.9589 ± 0.0413 0.9845± 0.0255 0.9749 ± 0.0312 0.9328 ± 0.0421 0.9772 ± 0.0359

25% 0.9763 ± 0.0303 0.9741 ± 0.0344 0.9744 ± 0.0314 0.9700 ± 0.0363 0.9378 ± 0.0374 0.9878 ± 0.0310

1% 0.9913 ± 0.0020 0.9454 ± 0.0153 0.9916± 0.0001 0.9894 ± 0.0157 − 0.9916 ± 0.0001

2.5% 0.9894 ± 0.0157 0.9511 ± 0.0261 0.9916± 0.0001 0.9895 ± 0.0150 − 0.9924 ± 0.0003

3M2D5 5% 0.9816 ± 0.0174 0.9520 ± 0.0257 0.9916± 0.0000 0.9916 ± 0.0011 − 0.9935 ± 0.0002

10% 0.9895 ± 0.0151 0.9895 ± 0.0151 0.9916± 0.0001 0.9873 ± 0.0213 − 0.9941 ± 0.0425

25% 0.9895 ± 0.0152 0.9831 ± 0.0293 0.9948 ± 0.0151 0.9895 ± 0.0151 − 0.9971 ± 0.0437

1% 0.5755 ± 0.0000 0.5755 ± 0.0000 0.5755 ± 0.0000 0.5755 ± 0.0000 − 0.5755 ± 0.0000

2.5% 0.5755 ± 0.0000 0.5755 ± 0.0000 0.5755 ± 0.0000 0.5755 ± 0.0000 − 0.5755 ± 0.0000

Electricity 5% 0.5755 ± 0.0000 0.5755 ± 0.0000 0.5755 ± 0.0000 0.5755 ± 0.0000 − 0.5755 ± 0.0000

10% 0.5755 ± 0.0000 0.5755 ± 0.0000 0.5755 ± 0.0000 0.5755 ± 0.0000 − 0.5755 ± 0.0000

25% 0.5755 ± 0.0000 0.5755 ± 0.0000 0.5755 ± 0.0000 0.5755 ± 0.0000 − 0.5755 ± 0.0000

1% 0.1531 ± 0.0099 0.2634 ± 0.0268 0.2110 ± 0.0016 0.2442 ± 0.0234 − 0.2518 ± 0.0248

2.5% 0.1674 ± 0.0180 0.2543 ± 0.0209 0.2119 ± 0.0021 0.2609 ± 0.0209 − 0.2779 ± 0.0368

MNIST 5% 0.2052 ± 0.0026 0.2560 ± 0.0234 0.2121 ± 0.0032 0.2485 ± 0.0211 − 0.2649 ± 0.0305

10% 0.2292 ± 0.0150 0.2627 ± 0.0190 0.2138 ± 0.0092 0.2573 ± 0.0224 − 0.2642 ± 0.0315

25% 0.2408 ± 0.0193 0.2576 ± 0.0169 0.2111 ± 0.0015 0.2406 ± 0.0194 − 0.2793 ± 0.0368

1% 0.3309 ± 0.0007 0.3307 ± 0.0007 0.3314 ± 0.0012 0.3308 ± 0.0008 0.3337± 0.0040 0.3316 ± 0.0005

2.5% 0.3306 ± 0.0001 0.3308 ± 0.0006 0.3314 ± 0.0012 0.3306 ± 0.0004 0.3325± 0.0031 0.3316 ± 0.0003

Person Activity 5% 0.3307 ± 0.0004 0.3306 ± 0.0002 0.3308 ± 0.0005 0.3308 ± 0.0004 0.3331± 0.0028 0.3317 ± 0.0006

10% 0.3308 ± 0.0003 0.3306 ± 0.0002 0.3306 ± 0.0001 0.3307 ± 0.0005 0.3323± 0.0029 0.3328 ± 0.0006

25% 0.3307 ± 0.0003 0.3306 ± 0.0002 0.3307 ± 0.0002 0.3307 ± 0.0004 0.3331± 0.0034 0.3325 ± 0.0001

1% 0.7925 ± 0.0000 0.7925 ± 0.0000 0.7925 ± 0.0000 0.7925 ± 0.0000 0.7925 ± 0.0000 0.7925 ± 0.0000

2.5% 0.7925 ± 0.0000 0.7925 ± 0.0000 0.7925 ± 0.0000 0.7925 ± 0.0000 0.7925 ± 0.0000 0.7925 ± 0.0000

Skin Segmentation 5% 0.7925 ± 0.0000 0.7925 ± 0.0000 0.7925 ± 0.0000 0.7925 ± 0.0000 0.7925 ± 0.0000 0.7925 ± 0.0000

10% 0.7925 ± 0.0000 0.7925 ± 0.0000 0.7925 ± 0.0000 0.7925 ± 0.0000 0.7925 ± 0.0000 0.7925 ± 0.0000

25% 0.7925 ± 0.0000 0.7925 ± 0.0000 0.7925 ± 0.0000 0.7925 ± 0.0000 0.7925 ± 0.0000 0.7925 ± 0.0000

1% 0.4886 ± 0.0012 0.5101 ± 0.0072 0.5040 ± 0.0064 0.5111 ± 0.0077 − 0.5112 ± 0.0070

2.5% 0.4928 ± 0.0034 0.5111 ± 0.0068 0.5053 ± 0.0061 0.5101 ± 0.0064 − 0.5190 ± 0.0058

Covtype 5% 0.5014 ± 0.0028 0.5115 ± 0.0062 0.5047 ± 0.0052 0.5097 ± 0.0067 − 0.5149 ± 0.0062

10% 0.5027 ± 0.0033 0.5113 ± 0.0061 0.5028 ± 0.0046 0.5119 ± 0.0081 − 0.5127 ± 0.0065

25% 0.5097 ± 0.0064 0.5114 ± 0.0060 0.5039 ± 0.0065 0.5134 ± 0.0057 − 0.5152 ± 0.0071

1% 0.9845 ± 0.0000 0.9845 ± 0.0000 0.9847 ± 0.0000 0.9846 ± 0.0000 − 0.9846 ± 0.0000

2.5% 0.9846 ± 0.0000 0.9847 ± 0.0000 0.9845 ± 0.0000 0.9846 ± 0.0000 − 0.9846 ± 0.0000

KDD99 5% 0.9846 ± 0.0000 0.9846 ± 0.0000 0.9847 ± 0.0000 0.9846 ± 0.0000 − 0.9846 ± 0.0000

10% 0.9846 ± 0.0000 0.9846 ± 0.0000 0.9846 ± 0.0000 0.9845 ± 0.0000 − 0.9848 ± 0.0000

25% 0.9846 ± 0.0000 0.9846 ± 0.0000 0.9846 ± 0.0000 0.9846 ± 0.0000 − 0.9848 ± 0.0000

23

Table 5: ARI values (means ± std) of different algorithms on eight data sets

Data sets fPDA SPFCM RSEFCM GOFCM MSERFCM BSEFCM SSEFCM

1% 0.8645 ± 0.0891 0.8014 ± 0.0662 0.9123 ± 0.0468 0.9326 ± 0.0439 0.9142 ± 0.0473 0.9410 ± 0.0438

2.5% 0.9537 ± 0.0476 0.8846 ± 0.0519 0.9663 ± 0.0490 0.9464 ± 0.0423 0.9075 ± 0.0379 0.9527 ± 0.0658

5K2D15 5% 0.9520 ± 0.0408 0.9109 ± 0.0547 0.9611 ± 0.0429 0.9484 ± 0.0526 0.9289 ± 0.0579 0.9546 ± 0.0563

10% 0.9634 ± 0.0421 0.9426 ± 0.0531 0.9757 ± 0.0360 0.9634 ± 0.0428 0.9095 ± 0.0557 0.9648 ± 0.0476

25% 0.9639 ± 0.0423 0.9622 ± 0.0465 0.9617 ± 0.0443 0.9567 ± 0.0493 0.9100 ± 0.0483 0.9654 ± 0.0431

1% 0.9799 ± 0.0037 0.9767 ± 0.0263 0.9804 ± 0.0002 0.9767 ± 0.0265 − 0.9803 ± 0.0003

2.5% 0.9773 ± 0.0224 0.9694 ± 0.0443 0.9804 ± 0.0001 0.9768 ± 0.0260 − 0.9804 ± 0.0006

3M2D5 5% 0.9754 ± 0.0000 0.9694 ± 0.0441 0.9804 ± 0.0001 0.9804 ± 0.0001 − 0.9805 ± 0.0005

10% 0.9768 ± 0.0260 0.9768 ± 0.0260 0.9804 ± 0.0001 0.9731 ± 0.0365 − 0.9780 ± 0.0008

25% 0.9763 ± 0.0260 0.9657 ± 0.0504 0.9768 ± 0.0260 0.9768 ± 0.0260 − 0.9769 ± 0.0008

1% 0.0002 ± 0.0001 0.0024 ± 0.0014 0.0007 ± 0.0004 0.0029 ± 0.0034 − 0.0025 ± 0.0015

2.5% 0.0002 ± 0.0002 0.0004 ± 0.0006 0.0008 ± 0.0018 0.0029 ± 0.0025 − 0.0026 ± 0.0026

Electricity 5% 0.0002 ± 0.0001 0.0003 ± 0.0012 0.0006 ± 0.0002 0.0013 ± 0.0021 − 0.0028 ± 0.0021

10% 0.0000 ± 0.0002 0.0011 ± 0.0010 0.0007 ± 0.0008 0.0010 ± 0.0011 − 0.0026 ± 0.0024

25% −0.0003 ± 0.0002 0.0007 ± 0.0012 0.0003 ± 0.0008 0.0001 ± 0.0006 − 0.0027 ± 0.0008

1% 0.0087 ± 0.0038 0.0817 ± 0.0210 0.0503 ± 0.0017 0.0681 ± 0.0159 − 0.0837 ± 0.0251

2.5% 0.0180 ± 0.0121 0.0750 ± 0.0174 0.0501 ± 0.0011 0.0812 ± 0.0225 − 0.0947 ± 0.0418

MNIST 5% 0.0403 ± 0.0013 0.0725 ± 0.0179 0.0501 ± 0.0009 0.0715 ± 0.0204 − 0.0856 ± 0.0225

10% 0.0568 ± 0.0089 0.0802 ± 0.0182 0.0506 ± 0.0040 0.0740 ± 0.0172 − 0.0857 ± 0.0330

25% 0.0636 ± 0.0136 0.0723 ± 0.0117 0.0496 ± 0.0004 0.0654 ± 0.0144 − 0.0931 ± 0.0378

1% 0.0032 ± 0.0003 0.0035 ± 0.0005 0.0030 ± 0.0009 0.0032 ± 0.0008 0.0051 ± 0.0014 0.0045 ± 0.0011

2.5% 0.0032 ± 0.0005 0.0034 ± 0.0006 0.0035 ± 0.0009 0.0034 ± 0.0007 0.0055 ± 0.0013 0.0045 ± 0.0007

Person Activity 5% 0.0034 ± 0.0005 0.0034 ± 0.0006 0.0034 ± 0.0005 0.0034 ± 0.0008 0.0052 ± 0.0010 0.0045 ± 0.0010

10% 0.0034 ± 0.0005 0.0033 ± 0.0006 0.0034 ± 0.0007 0.0036 ± 0.0004 0.0058 ± 0.0010 0.0046 ± 0.0005

25% 0.0035 ± 0.0006 0.0036 ± 0.0003 0.0035 ± 0.0008 0.0036 ± 0.0005 0.0057 ± 0.0010 0.0047 ± 0.0007

1% −0.0384 ± 0.0000 −0.0383 ± 0.0015 −0.0384 ± 0.0008 −0.0378 ± 0.0016 −0.0446 ± 0.0019 −0.0347 ± 0.0014

2.5% −0.0384 ± 0.0000 −0.0386 ± 0.0010 −0.0383 ± 0.0007 −0.0388 ± 0.0008 −0.0444 ± 0.0016 −0.0341 ± 0.0047

Skin Segmentation 5% −0.0384 ± 0.0000 −0.0381 ± 0.0007 −0.0386 ± 0.0004 −0.0384 ± 0.0005 −0.0447 ± 0.0018 −0.0343 ± 0.0084

10% −0.0384 ± 0.0000 −0.0383 ± 0.0004 −0.0386 ± 0.0004 −0.0382 ± 0.0004 −0.0443 ± 0.0016 −0.0341 ± 0.0024

25% −0.0383 ± 0.0000 −0.0383 ± 0.0003 −0.0382 ± 0.0004 −0.0384 ± 0.0002 −0.0442 ± 0.0020 −0.0342 ± 0.0055

1% 0.0071 ± 0.0123 0.0360 ± 0.0024 0.0281 ± 0.0147 0.0357 ± 0.0024 − 0.0359 ± 0.0024

2.5% 0.0091 ± 0.0167 0.0361 ± 0.0026 0.0322 ± 0.0114 0.0356 ± 0.0035 − 0.0364 ± 0.0023

Covtype 5% 0.0218 ± 0.0115 0.0363 ± 0.0025 0.0304 ± 0.0113 0.0355 ± 0.0026 − 0.0367 ± 0.0022

10% 0.0275 ± 0.0082 0.0364 ± 0.0025 0.0287 ± 0.0104 0.0365 ± 0.0035 − 0.0368 ± 0.0025

25% 0.0357 ± 0.0038 0.0363 ± 0.0025 0.0250 ± 0.0144 0.0371 ± 0.0023 − 0.0368 ± 0.0028

1% 0.9341 ± 0.0002 0.9341 ± 0.0003 0.9346 ± 0.0000 0.9344 ± 0.0006 − 0.9346 ± 0.0004

2.5% 0.9343 ± 0.0001 0.9347 ± 0.0001 0.9341 ± 0.0000 0.9343 ± 0.0006 − 0.9348 ± 0.0004

KDD99 5% 0.9343 ± 0.0000 0.9344 ± 0.0001 0.9348 ± 0.0000 0.9342 ± 0.0002 − 0.9348 ± 0.0000

10% 0.9343 ± 0.0000 0.9345 ± 0.0001 0.9345 ± 0.0000 0.9342 ± 0.0001 − 0.9848 ± 0.0000

25% 0.9343 ± 0.0000 0.9343 ± 0.0000 0.9345 ± 0.0000 0.9345 ± 0.0000 − 0.9348 ± 0.0000

24

Table 6: NMI values (means ± std) of different algorithms on eight data sets

Data sets fPDA SPFCM RSEFCM GOFCM MSERFCM BSEFCM SSEFCM

1% 0.6543 ± 0.0613 0.9106 ± 0.0295 0.9549 ± 0.0202 0.9612 ± 0.0172 0.9622 ± 0.0183 0.9559 ± 0.0212

2.5% 0.9669 ± 0.0246 0.9492 ± 0.0215 0.9803± 0.0204 0.9626 ± 0.0166 0.9603 ± 0.0153 0.9639 ± 0.0267

5K2D15 5% 0.9691 ± 0.0194 0.9601 ± 0.0229 0.9794± 0.0167 0.9750 ± 0.0214 0.9668 ± 0.0232 0.9771 ± 0.0237

10% 0.9772 ± 0.0201 0.9725 ± 0.0204 0.9855± 0.0140 0.9813 ± 0.0170 0.9601 ± 0.0229 0.9804 ± 0.0179

25% 0.9799 ± 0.0179 0.9803 ± 0.0185 0.9805± 0.0171 0.9787 ± 0.0197 0.9592 ± 0.0191 0.9819 ± 0.0159

1% 0.9686 ± 0.0050 0.9665 ± 0.0199 0.9693± 0.0002 0.9665 ± 0.0201 − 0.9691 ± 0.0004

2.5% 0.9665 ± 0.0201 0.9609 ± 0.0337 0.9694± 0.0001 0.9665 ± 0.0197 − 0.9688 ± 0.0008

3M2D5 5% 0.9634 ± 0.0000 0.9610 ± 0.0335 0.9693± 0.0001 0.9633 ± 0.0001 − 0.9686 ± 0.0006

10% 0.9666 ± 0.0197 0.9666 ± 0.0197 0.9693± 0.0001 0.9638 ± 0.0277 − 0.9603 ± 0.0006

25% 0.9666 ± 0.0197 0.9582 ± 0.0382 0.9665 ± 0.0197 0.9668 ± 0.0197 − 0.9673 ± 0.0006

1% 0.0001 ± 0.0002 0.0008 ± 0.0031 0.0007 ± 0.0028 0.0012 ± 0.0025 − 0.0016 ± 0.0011

2.5% 0.0003 ± 0.0002 0.0008 ± 0.0008 0.0007 ± 0.0013 0.0014 ± 0.0036 − 0.0015 ± 0.0022

Electricity 5% 0.0005 ± 0.0002 0.0007 ± 0.0006 0.0019± 0.0013 0.0013 ± 0.0016 − 0.0017 ± 0.0013

10% 0.0005 ± 0.0002 0.0012 ± 0.0012 0.0010 ± 0.0008 0.0011 ± 0.0014 − 0.0015 ± 0.0022

25% 0.0007 ± 0.0003 0.0016 ± 0.0015 0.0014 ± 0.0011 0.0009 ± 0.0010 − 0.0016 ± 0.0010

1% 0.0173 ± 0.0053 0.1821 ± 0.0314 0.1218 ± 0.0038 0.1593 ± 0.0286 − 0.1861 ± 0.0370

2.5% 0.0359 ± 0.0155 0.1713 ± 0.0279 0.1216 ± 0.0021 0.1819 ± 0.0345 − 0.1952 ± 0.0506

MNIST 5% 0.0745 ± 0.0024 0.1678 ± 0.0294 0.1215 ± 0.0024 0.1640 ± 0.0313 − 0.1856 ± 0.0304

10% 0.1322 ± 0.0153 0.1816 ± 0.0273 0.1228 ± 0.0099 0.1711 ± 0.0297 − 0.1859 ± 0.0414

25% 0.1504 ± 0.0233 0.1693 ± 0.0216 0.1204 ± 0.0013 0.1553 ± 0.0268 − 0.1969 ± 0.0462

1% 0.0083 ± 0.0004 0.0091 ± 0.0048 0.0091 ± 0.0037 0.0094 ± 0.0032 0.0158± 0.0049 0.0105 ± 0.0036

2.5% 0.0083 ± 0.0003 0.0095 ± 0.0026 0.0095 ± 0.0022 0.0084 ± 0.0018 0.0167± 0.0036 0.0118 ± 0.0027

Person Activity 5% 0.0084 ± 0.0003 0.0090 ± 0.0012 0.0092 ± 0.0018 0.0095 ± 0.0015 0.0135± 0.0031 0.0105 ± 0.0021

10% 0.0083 ± 0.0005 0.0081 ± 0.0014 0.0082 ± 0.0010 0.0094 ± 0.0013 0.0183± 0.0046 0.0102 ± 0.0021

25% 0.0083 ± 0.0008 0.0086 ± 0.0008 0.0082 ± 0.0008 0.0083 ± 0.0008 0.0151± 0.0031 0.0102 ± 0.0012

1% 0.0223 ± 0.0001 0.0223 ± 0.0014 0.0222 ± 0.0007 0.0219 ± 0.0012 0.0261± 0.0020 0.0257 ± 0.0012

2.5% 0.0223 ± 0.0001 0.0226 ± 0.0011 0.0223 ± 0.0007 0.0226 ± 0.0007 0.0260± 0.0016 0.0258 ± 0.0012

Skin Segmentation 5% 0.0222 ± 0.0001 0.0222 ± 0.0006 0.0225 ± 0.0004 0.0222 ± 0.0005 0.0264± 0.0018 0.0259 ± 0.0014

10% 0.0222 ± 0.0000 0.0222 ± 0.0004 0.0224 ± 0.0003 0.0221 ± 0.0003 0.0259± 0.0015 0.0256 ± 0.0017

25% 0.0222 ± 0.0000 0.0222 ± 0.0003 0.0221 ± 0.0004 0.0222 ± 0.0002 0.0258± 0.0021 0.0261 ± 0.0015

1% 0.0475 ± 0.0102 0.1052 ± 0.0048 0.0910 ± 0.0154 0.1058 ± 0.0053 − 0.1056 ± 0.0040

2.5% 0.0576 ± 0.0151 0.1044 ± 0.0036 0.0934 ± 0.0135 0.1034 ± 0.0032 − 0.1069 ± 0.0044

Covtype 5% 0.0777 ± 0.0193 0.1042 ± 0.0028 0.0914 ± 0.0141 0.1035 ± 0.0029 − 0.1062 ± 0.0035

10% 0.0818 ± 0.0157 0.1040 ± 0.0028 0.0911 ± 0.0138 0.1036 ± 0.0028 − 0.1049 ± 0.0031

25% 0.0974 ± 0.0106 0.1040 ± 0.0025 0.0842 ± 0.0173 0.1050 ± 0.0024 − 0.1049 ± 0.0035

1% 0.8683 ± 0.0003 0.8687 ± 0.0004 0.8683 ± 0.0000 0.8684 ± 0.0017 − 0.8689 ± 0.0006

2.5% 0.8688 ± 0.0002 0.8695 ± 0.0001 0.8681 ± 0.0007 0.8690 ± 0.0007 − 0.8689 ± 0.0000

KDD99 5% 0.8689 ± 0.0001 0.8690 ± 0.0001 0.8692± 0.0000 0.8688 ± 0.0003 − 0.8692 ± 0.0001

10% 0.8689 ± 0.0001 0.8692 ± 0.0002 0.8692± 0.0002 0.8688 ± 0.0002 − 0.8692 ± 0.0003

25% 0.8689 ± 0.0000 0.8690 ± 0.0000 0.8687 ± 0.0010 0.8691 ± 0.0002 − 0.8693 ± 0.0001

25

Table 7: Average running times (seconds) of different algorithms on eight data sets

Data sets FCM fPDA SPFCM RSEFCM GOFCM MSERFCM BSEFCM SSEFCM

1% 0.5838 0.1695 0.2109 0.3814 14.4499 0.1718

2.5% 0.4134 0.1816 0.2529 0.3625 14.6386 0.1795

5K2D15 1.6631 5% 0.3348 0.1935 0.2952 0.3875 15.1941 0.1920

10% 0.4028 0.2150 0.4588 0.3744 15.2461 0.2277

25% 0.3219 0.2449 0.6885 0.3790 15.2202 0.2341

1% 101.2333 58.5885 63.4912 61.6825 − 54.4018

2.5% 92.4848 58.5379 66.0536 61.6553 − 53.3239

3M2D5 160.8236 5% 87.3707 58.2549 66.7317 65.8855 − 52.8421

10% 81.4449 57.2347 68.1051 72.4159 − 55.0167

25% 72.7613 57.6662 67.6074 94.3177 − 57.4687

1% 4.1538 1.3828 1.6665 1.4205 − 1.1496

2.5% 3.5229 1.4359 2.0959 1.5397 − 1.2489

Electricity 1.5744 5% 3.1389 1.4778 2.3892 1.6154 − 1.3595

10% 2.8455 1.5441 2.7475 1.7198 − 1.4573

25% 2.1972 1.5189 3.6359 1.8566 − 1.4679

1% 30.3626 17.3804 19.2809 17.4374 − 16.6234

2.5% 36.7322 18.1886 23.5950 18.3776 − 17.6282

MNIST 58.8222 5% 51.9991 21.8893 36.5623 22.1608 − 21.1283

10% 58.9648 28.1189 58.8393 28.1534 − 26.2598

25% 70.8996 45.9129 113.5843 48.8118 − 33.5821

1% 33.0408 4.5147 6.7297 3.7956 853.1262 4.1060

2.5% 32.9488 5.6675 14.5002 4.7799 847.9988 4.4834

Person Activity 38.5009 5% 32.9770 10.3987 43.6366 9.7218 850.6041 4.6456

10% 32.9051 12.2334 75.9068 26.7228 844.2221 5.3023

25% 33.1079 10.3770 55.2864 21.6855 874.4470 9.8359

1% 11.6602 7.6906 8.9887 8.5815 2698.0212 4.8813

2.5% 10.8046 8.7356 9.2260 8.5726 2710.6388 4.9670

Skin Segmentation 10.4617 5% 9.8005 8.0374 9.3434 8.5989 2692.9827 5.1214

10% 8.4737 7.2770 9.5206 8.9529 2829.4008 4.8455

25% 11.9611 6.6344 9.5160 8.3653 2202.2446 4.4617

1% 84.0651 17.1506 20.4236 24.7981 − 16.5517

2.5% 81.7189 21.8120 27.7859 27.6978 − 22.3622

Covtype 618.57275 5% 92.5196 31.1592 36.6117 35.1420 − 29.1113

10% 153.3395 87.5048 58.0041 53.8501 − 69.9118

25% 242.0357 153.5883 101.6747 100.0634 − 72.0472

1% 51.5675 32.4625 34.1005 31.3545 − 30.7895

2.5% 48.0950 34.9000 33.8670 32.1880 − 30.2640

KDD99 56.7401 5% 50.9920 33.5175 35.7670 33.2165 − 32.8640

10% 52.0940 34.0085 36.1898 37.0895 − 35.9485

25% 50.6165 38.5935 36.6630 39.3895 − 36.4170

data sets. For example, the GOFCM algorithm takes more time on MNIST
and Person Activity data set when the sampling ratio is equal to 10% or 25%
than that of the FCM algorithm on the full data set.

On the other hand, the results of speedup ratio on the eight data sets for
the different algorithms are shown in Fig. 3. It is easy to note that, except
the SPFCM algorithm on 5K2D15 and 3M2D5 data sets, the speedup ratio
of each of these algorithms decreases with the increase of sampling ratio.
For the eight data sets, the SSEFCM algorithm typically has the highest
speedup, and the RSEFCM algorithm is often the second and faster than all
the others.

26

Sample size(%)
0 5 10 15 20 25

S
pe

ed
up

 r
at

io

2

3

4

5

6

7

8

9

10
(a) 5K2D15

SPFCM
RSEFCM
GOFCM
MSERFCM
SSEFCM

Sample size(%)
0 5 10 15 20 25

S
pe

ed
up

 r
at

io

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2
(b) 3M2D5

Sample size(%)
0 5 10 15 20 25

S
pe

ed
up

 r
at

io

0.2

0.4

0.6

0.8

1

1.2

1.4
(c) Electricity

Sample size(%)
0 5 10 15 20 25

S
pe

ed
up

 r
at

io

0.5

1

1.5

2

2.5

3

3.5

4
(d) MINIST

Sample size(%)
0 5 10 15 20 25

S
pe

ed
up

 r
at

io

0

2

4

6

8

10

12
(e) Person Activity

Sample size(%)
0 5 10 15 20 25

S
pe

ed
up

 r
at

io

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
(f) Skin Segmentation

Sample size(%)
0 5 10 15 20 25

S
pe

ed
up

 r
at

io

0

5

10

15

20

25

30

35

40
(g) Covtype

Sample size(%)
0 5 10 15 20 25

S
pe

ed
up

 r
at

io

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
(h) KDD99

Figure 3: Speedup ratio of the different algorithms on eight data sets.

4.5. Statistical test

In order to give an overall evaluation of the different algorithms, we apply
the Friedman test [45], [46] to the results in Tables 4-7. Since the BSEFCM
algorithm has no clustering results on some data sets, the other algorithms
SPFCM, RSEFCM, GOFCM, MSERFCM, and SSEFCM will be compared
in the following. Therefore, there are A = 5 algorithms, B = 160 cases (i.e.,
8 data sets, 5 kinds of sampling ratio and 4 evaluation indexes). Let rji be the
rank of the jth of the A algorithms on the ith of the B cases. For CA, ARI
and NMI indexes, the larger the value, the smaller the rank value. On the
contrary, the smaller the value of running time, the smaller the rank value.
Based on the mean performance of the five algorithms for each data set in
Tables 4-7, the average aligned-ranks of each algorithm is computed with
the Friedman test. The lower the average rank, the better the corresponding
algorithm. In order to check whether the algorithm with the smallest rank
value is significantly better than the others, the p-value of the Friedman test
is computed in practice, which represents the lowest level of significance of a

27

hypothesis. The null hypothesis for this test assumes that the results of the
algorithms are equivalent and their rankings are also similar. If the returned
p-value is less than the specified significance level, the null hypothesis is
rejected.

Under the null hypothesis, the Friedman statistic

X 2
F =

12B

A(A + 1)

A∑

j=1

R2
j − 3B(A+ 1), (20)

is distributed according to X 2
F with A − 1 degrees of freedom, being Rj =

(1
B
)
∑B

i=1 r
j
i the average rank of the jth algorithm for all the cases, and B the

number of cases of the problem considered.
The average ranks of the five algorithms over all 100 cases are calculated

to be 4.07, 2.98, 3.33, 3.14 and 1.47 for SPFCM, RSEFCM, GOFCM, MSER-
FCM, and SSEFCM, respectively. According to the Friedman test, a p-value
is 5.1793 × 10−53, which indicates that the null hypothesis can be rejected
with high confidence. One can observe that the proposed algorithm SSEFCM
is statistically better than four competitors (SPFCM, RSEFCM, GOFCM,
and MSERFCM) at the 95% confidence level. That is to say, the proposed
algorithm is the “winner” from this perspective.

4.6. Scalability test

To further examine the performance of the SSEFCM algorithm, scala-
bility is evaluated by measuring the running time with respect to data size
and dimension size. For this test, a synthetic data generator [44] is used to
generate a group of synthetic data sets with different numbers of data points
and attributes. The number of data points varies from 100,000 to 500,000,
and the dimensionality is varies among 10, 20, 30, 40, and 50. There are
11 classes for each synthetic data set. Note that the running time of all
the clustering algorithms is composed of the time of sampling, sampled data
clustering with the fuzzy c-means algorithm and labeling the remaining data
points. The sample size is set to 5%. And each value in Fig. 4 is the average
time of 20 runs of each algorithm.

The scalability with respect to data size of the different clustering algo-
rithms is shown in Fig. 4(a). In this study, we set the dimensionality to
10, and the cluster number to 11, and also vary the number of objects from
100,000 to 500,000. From Fig. 4(a), it can be seen that all sampling-based
clustering algorithms are linear with respect to the number of objects. The

28

increasing rate of the running time of the proposed algorithm SSEFCM is
very close to the RSEFCM and MSERFCM algorithms, and much slower
than the SPFCM and GOFCM algorithms. Therefore, the SSEFCM algo-
rithm ensures efficient execution when the data size is large.

The scalability with data dimensionality of the different algorithms is
shown in Fig. 4(b). We fix the data size to 100,000, and the cluster number
to 11, and also vary the number of dimensions from 10 to 100. Similar to
Fig. 4(a), one can see that the runtime of all the sampling-based clustering
algorithms increases linearly with the increasing of the data dimensionality.
Compared with the RSEFCM and MSERFCM algorithms, the proposed al-
gorithm SSEFCM takes more time. This is because the locality-sensitive
hashing technique is needed for data stratification before performing strati-
fied sampling. However, the SSEFCM algorithm performs significantly better
than the SPFCM and GOFCM algorithms. Thus, the SSEFCM algorithm is
also scalable to large-scale data sets.

1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

5

10

15

20

25

Number of objects

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

(a) Execution time comparison with the increasing number of objects

10 20 30 40 50 60 70 80 90 100
2

4

6

8

10

12

14

Number of attributes

E
xe

cu
tio

n
tim

e
in

 s
ec

on
ds

(b) Execution time comparison with the increasing number of attributes

SPFCM
RSEFCM
GOFCM
MSERFCM
SSEFCM

SPFCM
RSEFCM
GOFCM
MSERFCM
SSEFCM

Figure 4: Running time comparison of different clustering algorithms with the increasing
number of objects and attributes.

In summary, the experimental results show that the proposed algorithm
not only obtains higher or comparable quality of clustering results, but also

29

has high computational efficiency. This means that the SSEFCM algorithm
is more suitable for handling large-scale data sets. The reasons about the
effectiveness and efficiency of the proposed algorithm are analyzed in the
following. The time complexity of the FCM is O(Ndk2t), where N is the
data size, d is the number of attributes, k is the number of clusters, and t is
the number of iterations. Thus, given a data set with k clusters, the FCM
algorithm can be accelerated by reducing the sample size N , attribute size
d or iterations t. Except the SPFCM algorithm, the other sampling-based
FCM algorithms can reduce the runtime complexity via running the FCM
on subsample. One of the key differences between the proposed algorithm
and the other algorithms is the SSEFCM algorithm takes into account the
distribution of data sets in sampling. A data stratum containing a large
fraction of the objects or with large variance, should be sampled more objects
to represent the original data. This difference have the benefits of generating
more representative sample subsets. The better partial clustering results on
sampled data will result in better final clustering results. And the better
subsample will generating better initial cluster centers. Better cluster center
estimates reduce the number of iterations to reach the termination criterion.

5. Conclusion and future work

To overcome the limitations of the existing clustering algorithms with
sampling scheme, a new large-scale data fuzzy c-means clustering algorithm
based on stratified sampling, named Stratified Sampling plus Extension FCM
(abbr. SSEFCM), has been proposed in this study. In the developments, lo-
cality sensitive hashing technique has been used to divide the original data
into some strata. The partial clustering results of representative objects cho-
sen by stratified sampling have been obtained with the FCM algorithm. The
out-of-sample objects are assigned to their closest clusters via data label-
ing technique. To demonstrate the performance of the SSEFCM algorithm,
five representative fuzzy c-means clustering algorithms for large-scale data
with sampling scheme have been employed as references or baselines. Ex-
perimental results on the synthetic and real-world data sets show that the
proposed algorithm have much better clustering performance than the other
sampling-based algorithms in term of efficiency and effectiveness.

Sampling-based methods significantly reduce the time for clustering large-
scale data sets, but it may lower the clustering quality and performance
for some cases. Therefore, we will study the problem of large-scale data

30

clustering and develop scalable clustering solutions from the perspective of
incremental learning in the future.

Acknowledgement

The authors are very grateful to the anonymous reviewers and editor.
Their many helpful and constructive comments and suggestions helped us
significantly improve this work. This work was supported by National Nat-
ural Science Fund of China (Nos. 61603230, 61432011, 61876103, U1435212,
61573229), the Natural Science Foundation of Shanxi Province, China (No.201601D202039),
and CityU 11301014 of Hong Kong SAR Government.

References

[1] J. W. Han, M. Kamber, Data Mining Concepts and Techniques, Morgan
Kaufmann, San Francisco, 2001.

[2] A. K. Jain, M. N. Murty, P. J. Flynn, Data clustering: A review, ACM
Computing Surveys, 31(3) (1999) 264-323.

[3] R. Xu, D. Wunsch II, Survey of clustering algorithms, IEEE Transac-
tions on Neural Networks, 16(3) (2005) 645-678.

[4] A. K. Jain, Data clustering: 50 years beyond K-means, Pattern Recog-
nition Letters, 31(8) (2010) 651-666.

[5] X. Wu, X. Zhu, G. Q. Wu, W. Ding, Data mining with big data, IEEE
Transactions on Knowledge and Data Engineering, 26(1) (2014) 97-107.

[6] L. Bai, J. Y. Liang, C. Y. Dang, F. Y. Cao,The impact of cluster rep-
resentatives on the convergence of the K-modes type clustering, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 35(6) (2013)
1509-1522.

[7] Y. Wang, L. Chen, K-MEAP: Multiple exemplars affinity propagation
with specified k clusters, IEEE Transactions on Neural Networks and
Learning Systems, 27(12) (2016) 2670-2682.

[8] Y.H. Qian, F.J. Li, J.Y. Liang, B. Liu, C.Y. Dang, Space structure and
clustering of categorical data, IEEE Transactions on Neural Networks
and Learning Systems, 27(10) (2016) 2047-2059.

31

[9] Y. Yang, J.M. Jiang, Hybrid sampling-based clustering ensemble with
global and local constitutions, IEEE Transactions on Neural Networks
and Learning Systems, 27(5) (2016) 952-965.

[10] Y. Zhang, S. Chen, G. Yu, Efficient distributed density peaks for clus-
tering large data sets in mapreduce, IEEE Transactions on Knowledge
and Data Engineering, 28(12) (2016) 3218-3230.

[11] S.K. Thompson, Sampling, New York: John Wiley & Sons, 2012.

[12] S. Guha, R. Rastogi, K. Shim, CURE: An efficient clustering algorithm
for large databases, in Proceedings of the 1998 ACM SIGMOD Interna-
tional Conference on Management of Data, (1998) 73-84.

[13] R. T. Ng, J. Han, Efficient and effective clustering methods for spatial
data mining, in Proceedings of the 20th International Conference on
Very Large Data Bases, (1994) 144-155.

[14] T. C. Havens, J. C. Bezdek, C. Leckie, L. O. Hall, M. Palaniswami,
Fuzzy c-means algorithms for very large data, IEEE Transactions on
Fuzzy Systems, 20(6) (2012) 1130-1146.

[15] A. Nanopoulos, Y. Theodoridis, Y. Manolopoulos, Indexed-based den-
sity biased sampling for clustering applications, Data & Knowledge En-
gineering, 57(1) (2006) 37-63.

[16] C. Palmer, C. Faloutsos, Density biased sampling: An improved method
for data mining and clustering, in Proceedings of the 2000 ACM SIG-
MOD International Conference on Management of Data, (2000) 82-92.

[17] G. Kollios, D. Gunopulos, N. Koudas, S. Berchtold, Efficient biased sam-
pling for approximate clustering and outlier detection in large datasets,
IEEE Transactions on Knowledge and Data Engineering, 15(5) (2003)
1170-1187.

[18] P. Domingos, G. Hulten, P. Edu, C. Edu, A general method for scal-
ing up machine learning algorithms and its application to clustering,
in Proceedings of the Eighteenth International Conference on Machine
Learning, (2001) 106-113.

32

[19] Y. Ye, Q. Wu, J. Z. Huang, M. Ng and X. Li, Stratified sampling for
feature subspace selection in random forests for high dimensional data,
Pattern Recognition, 46 (2013) 769-787.

[20] L. Jing, K. Tian, J. Z. Huang, Stratified feature sampling method for en-
semble clustering of high dimensional data, Pattern Recognition, 48(11)
(2015) 3688-3702.

[21] D. Freedman, R. Pisani, R. Purves(Eds.), Statistics, 4th Edition, W. W.
Norton Company, NewYork, 2007.

[22] J. Bezdek, Pattern Recognition with Fuzzy Objective Function Algo-
rithms. New York, NY : Plenum Press, 1981.

[23] X. Yang, G. Zhang, J. Lu, J. Ma, A kernel fuzzy c-means clustering based
fuzzy support vector machine algorithm for classification problems with
outliers or noises, IEEE Transactions on Fuzzy Systems , 19 (1) (2011)
105-115.

[24] A. M. Bagirov, J. Ugon, D. Webb, Fast modified global k-means algo-
rithm for incremental cluster construction, Pattern Recognition, 44(4)
(2011) 866-876.

[25] Y. Wang, L. Chen, J. P. Mei, Incremental fuzzy clustering with multiple
medoids for large data, IEEE Transactions on Fuzzy Systems, 22(6)
(2014) 1557-1568.

[26] T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: An efficient data clus-
tering method for very large databases, ACM SIGMOD Record, 25(2)
(1996) 103-114.

[27] C. T. Zahn, Graph-theoretical methods for detecting and describing
gestalt clusters, IEEE Transactions on Computers, 100(1) (1971) 68-86.

[28] D. Cheng, R. Kannan, S. Vempala, G. Wang, A divide-and-merge
methodology for clustering, ACM Transactions on Database Systems,
31(4) (2006) 1499-1525.

[29] A. Ene, S. Im, B. Moseley, Fast clustering using MapReduce, in Pro-
ceedings of the International Conference on Knowledge Discovery and
Data Mining, (2011) 681-689.

33

[30] A. Mohebi, S. Aghabozorgi, T. Y. Wah, T. Herawan, R. Yahyapour,
Iterative big data clustering algorithms: A review, Software: Practice
and Experience, 46(1) (2016) 107-129.

[31] P. Indyk, R. Motwani, Approximate nearest neighbors: Towards remov-
ing the curse of dimensionality, in Proceedings of the 13th Annual ACM
Symposium on Theory of Computing, (1998) 604-613.

[32] J. Wang, W. Liu, S. Kumar, S. F. Chang, Learning to hash for indexing
Big Data: A survey, Proceedings of the IEEE, 104(1) (2016) 34-57.

[33] M. Datar, N. Immorlica, R. Indyk, V. S. Mirrokni, Locality-sensitive
hashing scheme based on p-stable distributions, in Proceedings of the
Symposium on Computational Geometry, (2004) 253-262.

[34] W. G. Cochran, Sampling Techniques, New York: John Wiley & Sons,
1977.

[35] J. A. Rice, Mathematical Statistics and Data Analysis, 3rd Edition,
USA, Wadsworth Publishing Co Inc, 2007.

[36] I. Zliobaite, A. Bifet, B. Pfahringer, G. Holmes, Active learning with
drifting streaming data, IEEE Transactions on Neural Networks &
Learning Systems, 25(1) (2014) 27-39.

[37] A. Frank, A. Asuncion, UCI Machine Learning Repository,
http://archive.ics.uci.edu/ml, 2010.

[38] L. Wang, J. C. Bezdek, C. Leckie, R. Kotagiri, Selective sampling for
approximate clustering of very large data sets, International Journal of
Intelligence Systems, 23(3) (2008) 313-331.

[39] P. Hore, L. O. Hall, D. B. Goldgof, Single pass fuzzy c-means, in Pro-
ceeding of the IEEE International Conference on Fuzzy Systems, (2007)
1-7.

[40] J. K. Parker, L. O. Hall, Accelerating fuzzy c-means using an estimated
subsample size, IEEE Transactions on Fuzzy Systems, 22(5) (2014)
1229-1244.

34

[41] J. Y. Liang, X. W. Zhao, D. Y. Li, F. Y. Cao, C. Y. Dang, Determining
the number of clusters using information entropy for mixed data, Pattern
Recognition, 45(6) (2012) 2251-2265.

[42] L. Hubert, P. Arabie, Comparing partitions, Journal of Classification,
2(1) (1985) 193-218.

[43] X. W. Zhao, J.Y. Liang, C. Y. Dang, Clustering ensemble selection for
categorical data based on internal validity indices, Pattern Recognition,
(69) (2017) 150-168.

[44] Y. Lai, R. Orlandic, W. G. Yee, S. Kulkarni, Scalable clustering for large
high-dimensional data based on data summarization, in Proceedings of
IEEE Symposium on 2007 Computational Intelligence and Data Mining,
(2007) 456-461.

[45] M. Friedman, The use of ranks to avoid the assumption of normality
implicit in the analysis of variance, Journal of the American Statistical
Association, 32(200) (1937) 675-701.

[46] D. Kumar, J. C. Bezdek, M. Palaniswami, S. Rajasegarar, C. Leckie, T.
C. Havens, A hybrid approach to clustering in big data, IEEE Transac-
tions on Cybernetics, 46(10) (2016) 2372-2385.

35

