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Abstract

Synthetic networks can be generated to . ~imic the dynamics and evolution
of complex interconnected systems in vea’ wocld. Many network models have
been established based on various: . ctu1 and topological characteristics, such
as degree distribution, clusterine coeti’ ~ient, mixing parameter, etc. These gen-
erated network models can serve a. null models in hypothesis testing to assess
nontrivial results about res’ ~rld data in terms of statistical significance and
generality. Therefore, 1 =earche 3 have actively pursued the development of
network generation m sdel® wit.. some given topological characteristics. So far,
Standard Monte Car.. ~aeth ,d and Simulated Annealing method are popular
to adjust the clur. ring coetficient and average path length of the existing net-
works. However these 1.ethods require a large number of calculations and are
easy to fall "ato "ocal extremes, which might limit the adjusting range of the
algorithm In orac. to reduce the amount of calculation and expand the range of
adjustme. ~t. we p opose a local structure based edge rewiring method to adjust
the ¢ astering coefficient and average path length of the network. By selecting
of a1 appror -iate local neighborhood of the node, we compute the ‘local’ clus-
‘ering roefficient and ‘local’ average path length on the “local neighborhood”,
«1d the . calculating cost in each adjusting iteration is greatly reduced. Focus-

~_ > ~n the “local neighborhood” strategy helps the algorithm escape from local
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extreme. Therefore, our edge rewiring strategy provides a boil - aq, stment
range of clustering coefficient and average path length in re- son hle computing
time. Experiment results show that our edge rewiring stra. ~ .y can provide a
boarder adjusting range for clustering coefficient and ¢ verage nath length than
standard Monte Carlo method and the Simulated Anne ling r ethod under the
same computation condition.

Keywords: network generation model, edge rev ‘ring, <l tering coeflicient,

average path length, community structure

1. Introduction

Complex networks|[l, 2] are currc wy = “»g studied across many fields of
science and engineering. A comple - netw rk is a set of items, with connections
between them. Examples of complex neuv.sorks include the Internet[3], WWW,
social networks[4], protein interac ion network|[5], gene-regulatory network and
economic network. Real comnlex networks cannot be easily accessed or even
duplicated and may grov too slo 7 for decisions based on their structure to be
taken. Therefore, rese rchers .. ~ e actively pursued the development of network
generation models t. m mic .he creation and evolution of complex networks
emerging from a - ariety ot .eal world interconnected systems. Network genera-
tion models have a nun.. ~r of benefits and applications[6], as they can serve as a
null model ir nyp thesis testing, allowing nontrivial results regarding real world
data to be casily ~ssessed in terms of statistical significance and generality.

It is aecrssar to study and comprehend the structural characteristics of
real-v .. d cou._lex networks, and then establish appropriate mathematical net-
worl models Many cases studying on various real-world networks have been
r_ported rom different perspectives. The networks with small-world effect[7]

lways 1 ave higher clustering coefficient and shorter average path length; the
networks with scale-free feature[8] obey power-law degree distribution; the net-
vorks with community structures[9, 10] could be divided into some groups such

that many links connecting nodes of the same group and comparatively few links
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joining nodes of different groups. Among various structural chara. “erisu. 3 to de-
pict the topology and dynamics of a complex network, the ¢ ast ring coefficient
and average path length of a network are the two importan, ‘.ributes contain-
ing significant information concerning its topological s ructur ». The clustering
coefficient of a network indicates how well connected a ~ode i- to its neighbors
and how compact the network is locally. The a erae | ath length expresses
a global characteristic of the network regardir~ the ave age number of steps
required to reach any two nodes. The coincidence ot . hort average path length
and high clustering coefficient is a general atwi. -7 a complex network. How
to adjust the clustering coefficient and a~~~~~~ = h length of a network model
has attracted more and more interest. Stana. 1 Monte Carlo method and Sim-
ulated Annealing method are popular o adjust the clustering coefficient and
average path length of the existing .. *wo.%s. However, these methods require
a large number of calculations ~nd a1 easy to fall into local extremes, which
might limit the adjusting range of 1. ~ algorithm.

In this paper, we pro usc ~ local structure based edge rewiring strategy
to adjust the clustering  ~efficic 1t and average path length of the network.
By selecting of an a pro riate local neighborhood of the node, we compute
the ‘local’ clusterirg . ffici mt and ‘local’ average path length on the “local
neighborhood”, ".u. ~ad of computing clustering coefficient and average path
length on the - 7 nle network. By doing that, we save calculating costs in each
adjusting itc. ~tic.1.. What more, the adjustment of one pair of edges might not
affect the clustering coefficient or average path length of the whole network,
which mig™> lear an algorithm fall into local extreme. The adjustment of one
pair Of edg s has a larger probability to affect the local clustering coefficient
or loc 1 aver ige path length, which might help the algorithm escape from local
xtrem  Therefore, our edge rewiring strategy can provide border adjustment
1. nee o clustering coefficient and average path length in reasonable computing
v e Experiment results show that our edge rewiring strategy can provide a
. oarder adjusting range for clustering coefficient and average path length than

standard Monte Carlo method and the Simulated Annealing method under the
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same computation condition.

The rest of the paper is organized as follows. In Section 2, w » nrovide some
basic terminologies and notations used in this paper, and 1. * duce some dom-
inant edge rewiring methods in the literatures briefly. .n Sec!’on 3, we present
our edge rewiring method (ERS) in detail. In Section 4, ve she v experiment re-
sults of our edge rewiring method (ERS) compare . wit'. .“andard Monte Carlo
method and the Simulated Annealing method We ror clude possible future

directions of our research in Section 5.

2. Related Work

2.1. Notations

A network (or a graph) G wit" N n. des and M edges can be denoted as
G = (V,E), where V. = {v1,v2,--+ vn} and E is the edge set of G. We
only consider simple graph here. The neighborhood of node v; € V' is denoted
as Ng(v;)) = {vj |v; € V.on, € E}. Let dg(vi) = |Ng(v;)| represents the
degree of node v;. The ¢ 2gree se. uence D of G is the non-increasing sequence
of its node degrees, sy D = “ig(v1),dg(v2), - ,da(vn)). A sequence d =
{di,da, -+ ,dy} of nc ~nr gati- ¢ integers is called a graphical sequence if there is
a simple graph G = (V, E) with degree sequence d. In this case we also say that
G realizes d. We use k., A(G) and §(G) to denote average degree, mazimum
degree and r inin um degree of G, respectively. An induced subgraph G[S] is a
graph whe e noac =et is S C V and whose edge set consists of all of the edges in
E that ! ~ve Hoth endpoints in S. We write [S] to denote the induced subgraph
by ne i subse. S when without causing confusion. Readers are referred to [11]
for t vminati ms not mentioned here in detail.

Che aegree distribution is defined by a probability function, p(d), which can
e unde stood as the probability that a randomly picked node has degree d,
~here each node has an equal probability to be picked. A network is scale-
ree if its degree distribution has a power-law form and is independent of the

connectivity scale[11, 12]. In a scale-free network, the possibility for a node with




Table 1: Typical statistical indicators of the complex network ins. ~ces|z,

Network Type N k AP 7+ T~ l @

physics coauthorship Undirected 52909 9.27 6 9 J.56 —

Student relationship network Directed 573 1.66 16.01 | ~ 001 —
WWW nd.edu Directed | 269504 | 5.55 ' 1127 . 020 | 2.1/2.4

word co-occurrence Undirected | 460902 70.13 — | 0.44 2.7

software classes Directed 1377 1.6" 1o 0.012 —

electronic circuits Undirected 24097 .34 1295 0.03 3

protein interactions Undirected 2115 zi 6 3 0.071 2.4

freshwater food web Directed 92 | 1 4 | 1.90 0.087 —

* Basic statistics for a number of published net.. vks. Tb . properties measured are:

type of graph, directed or undirected; total 1.. mber u: nodes N; average degree k;

Soval

average path length AP L; clustering coeffi~i~ ponent « of degree distribution

if the distribution follows a power law (or “—" .. ~ot; in/out-degree exponents are given

for directed graphs).

degree d is P(d) ~ d~%, where « is & 0. “tant determined by the given network.
Different complex networks ha. = .7~ 1t power law exponent even if the same
network in the evolution process.

For a network G, the _luster g coefficient of a node v; € V(G) is given by
the proportion of edges beuv.. ~en nhe nodes within its neighbourhood divided by

the number of edges .hat could possibly exist between them, denoted as

C AE(Naw))
Celv) = G ton da(w) —1)° @

The clusterin , co. fficient of G is the average of the local clustering coefficients

of all nodes o1 ~ i.e.
N

(@)= Calw). 2)

i=1

I :t ig(v .v;) be the shortest distance between v; and v; in G, the average

path >ngth APL) of G is defined as the average of the distance between all
1ode p.irs, defined as

Zi;ﬁj la(vi,vj)

APL(G) = =

(3)

The clustering coefficient of a network indicates how well connected a node

is to its neighbors and how compact the network is locally. The average shortest
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path length expresses a global characteristic of the network rege. 1ing . .e aver-
age number of steps required to reach any two nodes. The < oinidence of short
average shortest path length and high clustering coefficient . - « general feature
of a complex network. The clustering coefficient of # small wvorld network is
much larger than that of the random network, C' > C, ». w} leas the average
path length of a small world network increases log rith- ... Ally with the number
of nodes, APL ~ InN. Table 1 shows the bas - statisti- al indicators of some
complex network instances.

An important characteristic of these n.‘wor.. ", the presence of commu-
nity structures[13-15], i.e., with many lir*= ~=== (ing nodes of the same group
and comparatively few links joining nodes o1 *fferent groups. Newman in 2004
proposed modularity[9, 10] to measure “he community structure of a given net-
work. Specifically, suppose V' is p.«tion d into a set C = {C1,Ca,- -+ ,Cc} of
¢ non-overlapping communities ith . mion Uciec C; = V. Generally, c < N.
Here, we define community size s, -epresent the number of the nodes which
belong to community &, i .., », = |Ck|. The function 7(v;) represents label of
community which node ¢, belon | to, namely the range of values for 7(v;) is
1 < 7(v;) < ¢ The w ,dul rity of network calculation formula is (4), where the
function w(7(v;),7'v;), ndi- ates whether the node v; and the node v; belong

to the same com . ity, as shown in formula (5).

1 v d(v;)d(v;)
= ZZ(aij — W)W(T(Uz‘),T(’Uj)) (4)

sleoroy =4 7T (5)

0, 7(vi) # 7(v;)
Mau., .ctwork models have been established based on various structure and
opolog) ‘al characteristics, such as degree distribution, clustering coefficient,
mix..g parameter, etc. ER random network, created by Erdés and Rényi, is

¢ completely random network[16], whose degree distribution follows a Poisson

d.stribution.  Watts and Strogatz proposed WS small world network[7] that
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have both features of high clustering coefficients along with sho.  avei. ze path
lengths. Barabési and Albert proposed BA scale-free netwo «[§, t0 retiect “rich
gets richer” phenomenon. There are many other models w.."~ 1 are generaliza-
tions of these famous models, such as Leinberg navigab': smal’ world model[17],
EBA[18] model, fitness model[19], local world model|-". H¥. model[21], etc.
GN-Benchmark[10] proposed by Girvan and Newn an iv ."04 is one of the most
popular model with communities structures. Ar? there ar > many generalization
model[22-28] of GN-Benchmark are widely used in p. actice, such as Weighted
GN model[22], heterogeneous GN model[23] *nd L™ Benchmark model[24, 25],

etc.

2.2. Works closely related to edge rew rui,

The topological characteristics -”man, networks change over time. In order
to capture the empirically observed (nes, there are some network generation
models that control the clustering ~efficient or adjust clustering coefficient or
average path length in exis’ _ ~*works.

In 2002, Holme and F. m|[21] e tended standard BA scale-free network model
to include a “triad for nation svep” when introducing new nodes. In HK model,
the clustering coefficic. * coul . be tunable by changing control parameter m;—the
average number « . *riad formation trials per time step. In 2003, Newman pro-
posed a model ~f a netwo,k[29] that has both a tunable degree distribution and a
tunable clus’ °rin<, through bipartite project method, projecting bipartite graph
into the ir dividua.. with probability p of knowing others with whom they share
a group. ™ “J04 Volz[30] used a Markov chain Monte Carlo technique to gener-
ate b ,oh a given degree distribution and a clustering coeflicient by constructing
the « »propr’ ite queue to construct a triangle with a certain probability. In
“J05, Padham and Stocker[31] proposed an algorithm based on configuration
,~odel v ith triangle formation for adjusting three properties of networks, con-
. —ing the degree distribution, the clustering and the assortativity. In 2006,

7uo and Zhou[32] proposed a simple rule that generates scale-free small-world

networks with tunable assortative coefficient by controlling parameter p that is
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a probability of choosing neighbors. In 2010, Badham and Stocke '33] L. 2sented
a spatially constructed algorithm that generates networks w.th . enstrained but
arbitrary degree distribution, clustering and assortativity v, ontrolling prob-
ability p in create edge process. The above method, can ontrol clustering
coefficient in generation of a network. However, they ca ~ not ' e used to adjust
topological attributes(including clustering coefficic nt) «~ 1 existing network.

In 2002, Maslov and Sneppen[34] proposed ~n edge ¢ change method that
randomly choose two edges (say, connecting nodes A wnd B, and nodes C' and
D), and then alter the original edges AB nd ¢ ™ w0 AC and BD, provided
that none of these edges already exist ir *»~ ~~* ,rk. The important property
of the edge exchange method is that this proc ss does not change the degree of
each node. However, a blind repetition. o' the above edge exchanges have been
shown to destroy all degree-degree ~c ela ‘ons.

In order to study the perfor~~nce ¢ networks of artificial neurons with focus
on the role of the clustering coefficie.. Kim in 2004 introduced an algorithm[35]
to control the clustering ¢ ciuc»nt of a given network with the degree of each
node kept fixed and guara. “ee the lirection of each adjustment. Kim’s algorithm
randomly chooses twr edg :s and then rewires to have different end nodes, and
accepts the edge trial ¢ v v aen the new network configuration has higher (or
lower) clustering :v “ficient. This is the standard Monte Carlo(denoted as KMC

in following) & _ -lation at zero temperature with the Hamiltonian H:

H= Z Co
v
where ~ is u..> lustering coefficient of the node v, Kim’s algorithm could guar-
ante ' the di1 ction of each adjusting of clustering coefficient with the degree of
- 728 keo unchanged. The detailed description of KMC algorithm is shown in
Algoritt n 1. In KMC method, we need to input a user-specified value, called
desue clustering coefficient. If the cluster coefficient is to be increased (or de-
< reased), then we would accept the edge trial that could lead to a higher (or

lower) clustering coefficient of the network. The edge trial would be performed




o iteratively until the desired clustering coeflicient or the maxin.. ™ ite. ition is

reached.

Algorithm 1 Monte Carlo simulation (KMC) for adjusting clu. “ering coefficient

Input: Graph G, the desired value f’ of clustering coeffic. nt,
the maximum iteration maxt = 100000, thy ~hold = = 0.0001;
Output: Graph G’ with the value of clustering cc effic’ ... approximately equal
to f7.
1. Let t=0, GO = G;
2. Calculate f(G), the value of clusterin, coew’ "ont of G(¥;
3: Calculate E(C) = |f(Gy) — f'|
4: while (|f(G®) — f'| > ) and (t < maz., do
5. t<+t+1;
6:  Select randomly an edge pair . 79, 13z4) from G satistying x;x; ¢ E for
i€ {l1,2} and j € {3,4}:
7. Let G = GU{z1x3, 2004} — | "1%2, T3T4 };
8 Calculate E(C") = (G, — f'|
9: if (E(C") < E(C)) ‘“en

10: Gy = G;;

11:  else

12: Gy =G — (mas, womg} U{x120, 2324 };
13:  end if

14: end wh. »

To sv. ' the mfluence of average path length on the emergency dynamics
of th : majcrity-rule model, Andreas et al. in 2015 proposed an edge rewiring
meth 1[36] ased on Simulated Annealing (denoted as ASA in following) to

s uning “he average path length of a network to a user-specified value. The ob-
)« ~tive < £ ASA method is to minimize the difference between the current average

p . length and the target average path length, i.e., E(L) = ||L — L*"9¢t||. The
lgorithm selects randomly two edges AB and C'D such that each of them do

not have any common neighbors. Then, rewiring the edges and evaluating the
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new average path length of the network L' and the correspo.. 'ing 'jective
function E(L/). Then, algorithm ASA accepts or rejects th = ne v contiguration
using the Metropolis procedure, i.e., if E(L,) < E(L), A5 ~sould accept the
edge exchanges; otherwise, it would accept the edge ¢ xchang ~s with a proba-
bility 67%, where T'emp is the system’s pseudo- ~mpe ature and would
decrease in the way of annealing scheme. In AS2 | the .. 'tial systems pseudo-
temperature was set to Temp=10, and the pser Jo-temns ature decreased 10%
every 200 steps. The initial pseudo-temperature ana the drop of temperature
of ASA might limit the adjusting of averag. natu '~ _.gth to a very small range.
The detailed description of ASA algorith= = -~ n in Algorithm 2.

Among the above method, adjusting the ~lustering coefficient or average
path length of the whole network is « i putationally costly, and easy to fall
into local extremum. In order to n.+. ~ usc of local information of a network to
reduce the computational cost, ~~ well . s help our algorithm escaping from local
extreme, we propose an edge rewi. o strategy(ERS) to adjust the clustering
coefficient and average pat’. 1c.. “th in a local region of a network. The proposed
ERS method could provi’ ~ a bor rder adjusting range for clustering coefficient

and average path lens ch ¢’ the network under consideration.

3. Edge Rewir 1., Method

The main .dea f our edge rewiring strategy (ERS) is to adjust the clustering
coefficient ~nd .. » average path length in a local region of a given network. The
scheme r . th. pro»osed ERS method can be divided into two steps. In the first
step, v~ rana. ~ .1y choose edge pairs and then rewire each pair to have different
end 1odes, 1 -ovided that none of new edges already exist in the network. In
tr _ secounu step, we accept the edge pair with highest local efficiency function

0 exect e edge exchange operation based on standard Monte Carlo simulation
at zero temperatures to save calculating costs and escape from local extreme.
“Jne can adjust the clustering coefficient or average path length of a network to

a user-specified value by running the edge rewiring strategy iteratively.

10




Algorithm 2 Simulated Annealing (ASA) for adjusting averag. ~ath . ngth

Input: Graph G, the desired value f’ of average path le .gu.,

the maximum iteration maxt = 100000, thresi. 'd - = 0.0001,
the initial systems pseudo-temperature, sar Lemp(Temp=10),
the annealing scheme, the pseudo-tempera. e dec eased 10%

every 200 steps;

Output: Graph G’ with the value of average path .engtl approximately equal

10:

11:

12:

13:

14:

15:

16:

17:

18:

to f7.

Let t=0, GO = @G,

Calculate f(G®), the value of average path . 1gth approximately of G(©;
Calculate E(APL) = |f(Gy) — f'|

while (|f(G®) — f'| > &) and (t -~ m/ 20, do

t+—t+1;
Select randomly an edge vair (. -x9, x324) from G satisfying:
(\)ziz; & E for i € {1,2, ~nd j € {3,4};
(ii) Ne(z)) YN V=0 fori,j € {1,2,3,4}
Let G, = GU{x102  a2x4} - {m120, 2324 };
Calculate E(AF L") = |7 4%) — [/
if (E(APL’) < 7'AP7)) then
G =Gy
else
Calr alat: probability = e%ﬁfw
if (Ranac ~ number < probability) then
G = /’;H
else
G =G, — {x1ws, v0m4} U {m122, X324 };
end if
e d if
Reduce the system pseudo-temperature according to the annealing sched-

ule

22: end while

11
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An edge exchange operation on edge pair (2122, x324) is to 1« vire v. 2 edges
between x;’s, that is to say, delete edges {x122,x324} frov . G »nd add edges
{z123, 2024} to G. Obviously, edge exchange operations .~ :p the degree of
every node unchanged. Hence, we can execute edge excha: e operations to
adjust the value of the concerning topological propertic - with ;ut changing the
degree distribution of the network. If an edge exc ang” < eration on edge pair
(x122, x324) could change the value of the concer ~ing tone’ogical property (here,
we only take clustering coefficient or average path leng h in consideration) of the

+

network to the desired direction, we call it n et *"ve exchange; Otherwise, it
is an ineffective exchange. To determine ~*~**-~ | edge exchange operation be
effective, we should calculate the clustering c. ~fficient (or average path length)
of the network before and after the edge ex _hange operation. This would require
a large number of calculations and 1. ¢ sv t. fall into local extremes, which might
limit the adjusting range of thr ~loorivhm.

Calculating the local effectivenc. ~ of an edge change operation is a good
choice for saving calculatir | co. s and escapes from local extreme. Therefore, we
construct efficiency funcu.. » to sl ow the local effectiveness of an edge exchange
operation on clusterir s co flicient and average path length. We randomly select
two parallel edges =1z, * F .ad z3z4 € E from G, satisfying that z;z; ¢ E for

1

t=1,2and j = o, Then we accept the edge exchange operations based on
standard Mon* = “‘arlo simulation at zero temperatures to reach a user-specified

value by rurn. ing edge rewiring strategy iteratively.

3.1. Loc 'l el ecti eness of edge pairs on adjusting clustering coefficient

F ¢ a network G, let x175 and w3z4 be two edges of G. Let G’ be the
new _raph cotain from G by executing the edge exchange operation on edge
Alr (- x2,x3xs). We denote Ci(x;) be the clustering coefficient of node v;
G ard Cgr(x;) be the clustering coefficient of node v; in G'. We use an
. riency function LO(z122, x324) to estimate the local effectiveness of an edge

hair (@129, x314) on adjusting the clustering coefficient of the network, defined

12




as

LC($1$2,$3.’E4) = Z (Cg(ail) — CG/ (xl)\ (6)

i=1
8.2. Local effectiveness of edge pairs on adjusting aver ge path length

For a network G, let x125 and xz314 be two edges o. 7. T .t G’ be the new
graph obtain from G by executing the edge excl ange o, “ration on edge pair
(x12, x314). Let Ny = Lj Ng(z;), then N7 = | ) N~/¢;). We consider the
variation of shortest pathl:lelzngth between nodes ilri N, after executing edge ex-
change operation on (122, x324). We use « ~flicic y function LP(zqx2, 2324)
to estimate the local effectiveness of an 77~ |

X122, x3x4) on adjusting the

Y
average path length of the network, defined a.
LP(z1x9,x324) = ? (la(vi,v;) = lar (vi, ). (7)
1# 5,0, v N
3.8. Adjusting strategy for retaw. ~q conmunity structure

For a network G with comunity structure, it is always expected that ad-

25 justing the clustering effi 1ent (or werage path length) of G as much as possible

240

245

without changing the origina. .ommunity structures of G. It turns out the
clustering coefficieni - “ne e jerage path length increases with the community
structure strengt! 37].

Let G’ be another nc work having identical degree sequence and community
structure wit 1 G )y executing a sequence of edge exchange operations from G.
If we alter some ¢ '7es between communities to edges within communities, then
the clus? rin , coe dcient (or the average path length) of G’ is more likely greater
than “aat of & If we alter some edges within communities to edges between
com, unities then the clustering coefficient (or the average path length) of G’
i, wore likely smaller than that of G.

Base | on the above analysis, to keep the community structure of a network
~nchanged as much as possible after edge exchange operations, the probability
hat an edge selected between communities should be greater than an edge

selected within communities when increasing the clustering coefficient (or the

13
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average path length), whileas the probability that an edge se. ~ted | etween
communities should be smaller than an edge selected withir cor ™unities when
decreasing the clustering coefficient (or the average path lew * 1).

However, an increased (a decreased) local effective aess of an edge pair on
adjusting clustering coefficient or the average path lei. -th m ght not indicate
the edge pair lies in between (within) communiti s, ov ...~ to that an increase
(a decrease) of local effectiveness might not le~d to an .ncrease (a decrease)
of the corresponding topological property value of 1. e whole network. If we
execute edge exchange operation once the ~hang i local effectiveness of an
edge pair coinciding to the desired dire~*~~ *"  the probability of an edge
between communities selected might be appic -imately equal to the probability
of an edge within communities selectea ft .r frequent edge exchange operations.
Thus, the community structure ot . mnet -ork might be weaken after frequent
edge exchange operations. Mor-~ver, \he convergence speed of adjusting might
be limited. Thereby, the adjusting -nge of the clustering coefficient and the
average path length might ve . rther affected.

To retain the commu. “*v str .cture as much as possible, we randomly se-
lect multiple parallel :dge pairs from G at one time, such that each edge pair
(x129, w324) satisfics 0, - & 2 fori € {1,2} and j € {3,4} and nodes involved
in the edge pair a.> mutually distinct. Then we choose the edge pair with
maximum (or _mimum) value of local effectiveness to execute edge exchange
operation orn. “he :dge pair. We select ten parallel edge pairs from G at one time
in followi g erperi.ients.

Algori.™ a 3 Lives the edge rewiring strategy ERS for adjusting clustering
coeff cient ¢ - average path length described above. We use “T'P” to represent
the c “respe ading topological parameter, which depends on actual situation.

We rovide an illustration example to explain why the proposed edge rewiring
s.matee can retain the community structure. As is shown in Figure 1, the clus-
v ..., coefficient is increased from 0.1849 to 0.3407 by our edge rewiring strategy,
.H»mmunity structure has not changed too much. In our edge rewiring strategy,

we select ten parallel edge pairs from G at one time, then choose the edge pair
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Algorithm 3 Edge rewiring strategy for adjusting T'P
Input: Graph G, the desired value f’ of TP,

the maximum iteration maxt = 100000, thresl. 'd - = 0.0001;

Output: Graph G’ with the value of TP approximat .y equal o f.
1: Let t=0, GO = G;
2: Calculate f(G®), the value of TP of G(;

while (|f(G®) — f'| > ¢) and (t < maxt) do

o

40 t+—t+1;
5. for iter=1 to 10 do

6: Select randomly an edge pair (z129, 22w \ from G satisfying x;z; ¢ E
for i € {1,2} and j € {3,4};
7: Let Gl = GU{x123, Tama} -9 1w, TaTa};

8:  end for
9:  Let G' = Gy, where G}, = arg max{f(G})ly = 1,2,---,10};

10: end while

with maximum value of "ocal effe “tiveness to execute edge exchange operation
on the edge pair. TV crefore, ‘ae probability that an edge selected between
communities should . » ¢ eatr . than an edge selected within communities when
improving the cl' :tering cuefficient. In the process, we can adjust clustering
coefficient faster and ke. » the community structure of a network unchanged as
much as poss ole 7 iter edge exchange operations. When the original network has
the grouns -trutin, ~ommunity structure information, our edge rewiring strategy

would k = t e o .ginal community structure as much as possible.

3.4. Comple ity analysis

Tt tancs O(N*(k)?) to compute the clustering coefficient and O(N (N +M))
o comp te the average path length of the whole network after each edge rewiring
operasion in average for a network with N nodes and M edges. Let k be the
~verage degree of the network.

Let txarc be the iteration number for adjusting clustering coefficient using

15




295

300

305

(a) (b)

Figure 1: The dynamics of an example =two... .sing ERS strategy

KMC algorithm, then the time complexity ¢, KMC algorithm takes is O(t g rr¢ *
N Ez). Let ;4 be the iteration n mb . [or adjusting average path length
using ASA algorithm, then the ave . ve ti. e complexity of ASA algorithm takes
is O(tyga * N * (N +M)) =054 k= N?).

In ERS algorithm, we calcula.~ the local effectiveness of an edge change
operation to determine wh *her an edge exchange operation should be ac-
cepted instead of globa’ charact ristic values. The average time complexity
of calculating the clus .ering co dicient of local structure is O(4 x EQ), and the
time complexity of ¢ 'cilati.g the average path length of local structure is
O(4k * (4k + 2k ) = O(SE?’). Let tgrs and tfpg be the iteration number
for adjusting clustering coefficient and average path length by ERS algorithm,
respectively. hen £RS algorithm with take O(4*tgrs *EQ) and O(8xt; g *Eg)
for adjust’ .1g clus. ring coefficient and average path length by ERS algorithm,
respecti. ~lv.

W. nave tpps < txme* and thpe < /g4, since our local strategy could
help ~lgorith n escaping from local extreme efficiently to save calculating costs.

Tor a large network, we always have k << N, hence we have
—2 —2
dxtprs xk <<tgmo*x N xk;
-3 —
8 tppg *k <<thyga*k* N2

Hence, our ERS could provide border adjustment range of clustering coefficient
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and average path length in reasonable computing time. Tau. 2 s ws the

algorithm complexity of KMC, ASA and ERS methods.

Table 2: Summary of complexity analy< .

Method Adjust C A djust A L
ERS O(4*tERS*E2) C\G*tERS*EB)
KMC O(tK]WC *N*EQ) -

ASA — Oty gk kx N?)

* The number of nodes of network N the verar : degree of network
k. tgrs and tzpg are the iteration nuuer for adjusting clustering
coefficient and average path leng. vy wKS algorithm. tx ¢ is the
iteration number for adjusting clustering -oefficient using KMC algo-
rithm. t/ASA is the iteration nu. ber .or adjusting average path length

using ASA algorithm.

4. Experimentation

4.1. Artificial network n ~dels

We construct twe arti‘cial network models with community structure to
validate the feasib’lity nd eliability of the proposed edge rewiring strategy
ERS. Note that - o' networks are characterized by heterogeneous distributions
of node degres ~d community sizes, i.e., the tails of the distributions of the
networks’ n. 1e egree and community sizes can be fairly well approximated
by a pow r law. v,hen constructing artificial network models, we should take
into acco. the heterogeneous distributions in networks to mimic the real-
worl: netw-rks. We generate artificial networks whose degree sequence and
comt. ity < .ze sequence which obey scale free distribution.

We Srstly generate a reference degree sequence D = {dy, ..., dy} with prob-

aility < (d;) according to the power law distribution given by (8),

)= (5s) - ®)
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where dy > dy ... > dn, A(G) > d; > §(G), a is the power expo. "t an.l o =3
in the following generation process. We might trim slightl- soi 2~ items of the
generated sequence to make D graphical.

Similarly, we generate community size sequence {s; ..., s, obeys power law
distribution, where ¢ is the predefined number of comn. mities 51 < 85... < s¢
and > _, si = N.

We use mixing parameter pu, the ratio betwe n the ext rnal degree of a node
with respect to its community and the total degree ¢ the node, to control the
level of community structures in our netw ~k 1. * ... A smaller p results in
networks with higher level of community «*=-~* 3.

For node v;, we define its internal degrec ~nd external degree according to
the mixing parameter p as (9):

d™(vg) = |d(c) . (1 —p)+0.5],
_ (9)
d (v;) = ') — d™ (i),
where d(v;) denotes the ... er of adjacent nodes that lie in the same com-
munity as v;, and d®*(v;, 'enoter the number of adjacent nodes that lie in the
different community * om ;.

Each node wou'd . nrir: to be distributed the communities with smaller
size, provided tb . “he internal degree of the node is no larger than the size of
the communits "dges connecting different communities are linked randomly ac-
cording to t. ~ e¥ ernal degree sequence D®* = {d°"(vy), d** (va),...,d"" (vN)}.

We ad ( ed~es w.chin communities by two different generation models: Havel-
Hikimi m. 7 38" to generate communities with high assortative mixing, which
is de med a “a preference for high-degree nodes to attach to other high-degree
node:.”- and _onfiguration model[39] to generate communities with random links.
see det -ils in Section 4.2 and 4.3.

Our experimentation has been conducted on two computer-generated net-
w .., to prove the validity and effectiveness of the proposed method. We com-
. are the performance of the proposed edge rewiring strategy to Monte Carlo

methods given by Kim and Simulated Annealing method proposed by Andreas
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et al., respectively. All the experiments have been carried on W. dows "0 plat-
form, running on a PC with Intel Core CPU i7-2600@3.40 G 1z & ~1 8 GB RAM.

The programming language is Java.

4.2. Effects of edge rewiring strategy on HH network 1. odel

Havel-Hakimi algorithm[38] can be used to gene rate = ~etwork from a graph-
ical degree sequence. The networks generated by .iavel- {ikimi algorithm are
always assortative, that is to say, there is a preferc. ce for high-degree nodes
to attach to other high-degree nodes. In grmera.'~n ,ur Havel-Hikimi network
model, we construct edges within communities . - Havel-Hikimi algorithm ac-
cording to the inter-degree sequence of G, L\ = {d"(v;)|7(v;) =k}, 1 <k <ec.
We also call it a HH network model fc - ak hicviation.

The topological properties of 1 ™ net\ ork model are dependent on the av-
erage degree and the mixing parame er of the network. The average degree
reflects the density of a network. .™e average degree increment of the network
will cause general increasir  'mistering coefficient and general decreasing aver-
age path length, and visc ersa. F bwever, the community structure of a network
has no relation with t'.e averag: degree, but has a significant relation with the

Aong  vith the increasing mixing parameter, the modu-

mixing parameter /..
larity of the netw . - will decrease, which means the community structure of the
network is dissmnearing gradually. Figure 2 shows the changes of topological
properties (7 «clur ing clustering coefficient, average path length and modular-
ity) which are assc “iated with the change of the average degree and the mixing
parameuv. * + in *.1e generated HH networks. In all experiments, we set node
num! cr N = 5000, the number of communities ¢ = 10, power-law exponent of
degr. ~ distri yution aw = 3, power-law exponent of community size distribution
,=2.

Fror . Figure 2, we can also observe that the mixing parameter increment
" *he network will cause general decreasing clustering coefficient and average

Hath length. This is as expected because a higher value of mixing parameter

will lead to formation of edges to long distance neighbours which reduces the
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global path length and decreases the chances of triads in netwo.’

average path length

o s
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mixing parameter i mixing parameter

A}

(a) Impact of mixing parame- (b) Impact of mixing pai. ~e- ( mpact of mixing parame-

ter () and average degree (k) ter (u) and average degree (k)  °r (u) and average degree (k)

on clustering coefficient on average path lencth on modularity

Figure 2: Structural properties of »~*~- ' .erated by HH model

4.2.1. Adjusting clustering coefficient . {H network model

In this section, we adjust clust ., coefficient by edge rewiring strategy
ERS. Through several iteratio. ~ w. an adjust the clustering coefficient of
the network effectively without changmg the degree distribution. We compare
the performance of our ed se rew. ing strategy on adjusting clustering coefficient
with that of Kim’s Morte Ce 'o v iethod(KMC). In each iteration, KMC method
selects a pair of par ulel edgrs to execute edge rewiring as long as the edge
exchange would c} ange ti. lobal clustering coefficient to the desired direction.
In our method, we sc. =t a pair of parallel edges in each iteration to calculate
its local efficic acy Hn local clustering coefficient according to (6). We choose the
edge pair witn 'ae highest local efficiency to execute edge rewiring every ten
iteration .

Fignres o 1 < now the adjusting performance on clustering coefficient in net-
worl s with « verage degree varying from 5 to 15 with N = 5000, ¢ = 0.1 and
¢ — 10, 'cre N is node number, p is mixing parameter, and ¢ is community
wmber. The red lines correspond to the results of our method and the blue
linc. wo those of KMC method. For average degree k = 5,10 and 15, the clus-
t ring coefficient of the initial HH network equals to 0.1850, 0.2065 and 0.2274,

ruspectively.
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Figure 3: Comparison results of ERS and KMC in time = HH — del when increasing clus-
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Figure 4: Comparison results <. Bk and KMC in time on HH model when decreasing clus-

tering coefficient under diffei. t averag degree

For average degi ~ F = 7, the KMC method increased the clustering co-
efficient of the H« networ.. from 0.1850 to 0.1963 after 100,000 iterations in
29,995.50 seconds, the |
cient from 0 85C to 0.1963 after 100,000 iterations in 2,542.41 seconds. For

roposed ERS method increased the clustering coeffi-

average de ;ree n = 10, the KMC method increased the clustering coeflicient of
the HH etwrk f om 0.2065 to 0.2107 after 100,000 iterations in 31,455.78 sec-
onds. “.: prop sed ERS method increased the clustering coefficient from 0.2065
t0 0.'107 aft r 100,000 iterations in 2,706.00 seconds. For average degree k = 15,
t'.c KMU method increased the clustering coefficient of the HH network from
12274t 0.2300 after 100,000 iterations in 33,922.76 seconds, the proposed ERS
method increased the clustering coeflicient from 0.2274 to 0.2297 after 100,000
“cerations in 2,741.07 seconds.

For average degree k = 5, the KMC method decreased the clustering co-
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efficient of the HH network from 0.1850 to almost zero after 1. 200 1. rations
in 3,012.42 seconds; the proposed ERS method can decreas : th ~lustering co-
efficient from 0.1850 to almost zero after 20,000 iterations ~ 516.36 seconds.
For average degree k = 10, the KMC method decreas od the clustering coeffi-
cient of the HH network from 0.2065 to almost zero a."er 25 JOO iterations in
7,873.55 seconds and the proposed ERS method ¢ ecre .. the clustering coeffi-
cient from 0.2065 to almost zero after 59,000 ir 1,567 17 seconds. For average
degree k = 15, the KMC method decreased the cluste ing coefficient of the HH
network from 0.2274 to almost zero after 37 900 .. *~ .cions in 12,892.20 seconds
and the proposed ERS method decrease *%~ -~ sring coefficient from 0.2274
to almost zero in 2605.56 seconds.

In Table 3, we show the compariso. * ¢ 1 time consuming and effect on com-
munity structures from the initiai <. ster 1g coefficient up to an given value,
and in Table 4 we show comy ~rizon .=sults from initial clustering coefficient
down to an given value. It can be .~ncluded that the proposed ERS method
can increase or decrease tl - i “tering coefficient of the HH network at a faster

rate. What more, our me.-od re ains community structures well.

Table 3: Comparic on re ,ults ' increasing clustering coefficient for HH Networks

N = 5000, =35 ST N = 5000, k = 10 N = 5000, k = 15
ERS KMC ERS KMC ERS KMC
c - Cq Cq
time(s) m  cime(. m time(s) m  time(s) m time(s) m  time(s) m

0.1850 0 0.8202 0 0.5.02|0.2065 0 0.7598 0 0.7598(0.2274 0 0.7735 0 0.7735
0.1940 1814 0.f .15 2395 0.8115(0.2095 1877 0.7580 15816 0.7578(0.2294 2293 0.7729 25394 0.7731
0.2030 3884 ( 3003 7861 0.7995(0.2125 4051 0.7546 46445 0.7549(0.2314 4570 0.7719 54425 0.7729

0.2120 6459 0.,. 7 70821 0.7912(0.2155 6090 0.7518 69706 0.7519(0.2334 7226 0.7715 81266 0.7728
0.2210 925 0.7742 > — 10.2185 8437 0.7494 — — 10.2354 10127 0.7714 — —

0.2341 12" ,6 0.” ,81 0.2243 13422 0.7451 0.2379 13473 0.7711

*Total n. ~her of nodes N; average degree k; clustering coefficient C;; Run time in

9

¢ conds ¢ »d modularity m; means that the corresponding clustering coefficient can

1. 't be aclk eved within a reasonable period of time.

4 2.2.  .djusting average path length in HH network model
~ this section, we adjust average path length by edge rewiring strategy
RS. Through several iterations, we can adjust the average path length of the

network effectively without changing the degree distribution. We compare the
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Table 4: Comparison results in decreasing clustering coefficient for h.” Netwc ks

= 5000,k = 5 N = 5000, k = 10 N - 5000,k = 15
ERS KMC ERS KMC ERS KMC
Ca Ca ¢ - —V —————
time(s) m  time(s) m time(s) m  time(s) m tin, Y m  time(s) m

0.1850 0 0.8202 0 0.8202|0.2065 0 0.7598 0 0.7598(0.227~ 0 v 735 0 0.7735
0.1480 38 0.7994 122 0.7766(0.1652 114 0.7325 293 0.7108|0.1 20 176 0.7448 528 0.7182
0.1110 84 0.7740 300 0.7276(0.1239 255 0.7002 706 0.6498|0.1 66 398 L7089 1218 0.6530
0.0740 135 0.7453 538 0.6739(0.0826 439 0.6573 1281 0.5774(0.05 ™ 692 ).6615 2146 0.5758
0.0370 205 0.7069 897 0.6139(0.0413 712 0.5958 2270 0.487" 458 1.oo 0.5923 3721 0.4723

0 506 0.5864 3012 0.5395 0 1565 0.4470 7873 0.3' 33 (‘ 2605 0.4141 12892 0.3003

* Total number of nodes N average degree k; clustering coeff ient Cg; Run time in

seconds and modularity m.

performance of our edge rewiring strategy o. adjusting average path length
with that of Andreas’s Simulated Annea. ~¢ method (ASA). In each iteration,
ASA method selects a pair of paralle’ . '~~< to execute edge rewiring as long as
the edge exchange would change the glc' al average path length to the desired
direction. In our method, we select . p.’'~ of parallel edges in each iteration to
calculate its local efficiency on . ~ai «._rage path length according to (7). We
choose the edge pair with the highest local efficiency to execute edge rewiring
every ten iterations.

Figures 5-6 show t} 2 aq,. “ti.g performance on average path length in net-
works with average .egr e ve ying from 5 to 15 with N = 5000, 4 = 0.1 and
¢ = 10, where N "5 node . .mber, p is mixing parameter, and ¢ is community
number. The rcd line. ~orresponds to the results of our method and the blue
lines to those of . SA method. For average degree k = 5,10 and 15, the aver-
age path lengt.i. ~f the initial HH network equals to 6.8607, 4.5310 and 4.0226,

respecti cly.
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Figure 6: Comparison results ¢ K. nd ASA in time on HH model when decreasing average

path length under different & ~rage deg ee

For average deg.» I = ,, the ASA method increased the average path
length of the HF networxs from 6.8507 to 8.5197 after 100,000 iterations in
211,961 seconds, the p. mosed ASA method increased the average path length
from 6.8507 “0 8. 197 in 73,893 seconds. For average degree k = 10, the ASA
method in reasc. the average path length of the HH network from 4.5310 to
4.9915 # ter .00, J0 iterations in 490,077 seconds, the proposed ERS method
incres _1the . erage path length from 4.5310 to 5.2331 after 100,000 iterations
in 4 8,220 s conds. For average degree k& = 15, the ASA method increased
t'.c average path length of the HH network from 4.0226 to 4.4050 after 100,000
teratior s in 704,894 seconds, the proposed ERS method increased the average
nath length from 4.0226 to 4.5775 after 100,000 iterations in 625,442 seconds.

For average degree k = 5, the ASA method decreased the average path
length of the HH network from 6.8602 to 6.0278 after 100,000 iterations in
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272,321 seconds; the proposed ERS method can decrease the avei. ~e pa... length
from 6.8602 to 5.2800 after 100,000 iterations in 174,739 s con'« For average
degree k = 10, the ASA method decreased the average pat. 'ngth of the HH
network from 4.5310 to 4.2282 after 100,000 iterations mn 55C 742 seconds and
the proposed ERS method decrease the average path 'engtl from 4.5310 to
3.8065 after 100,000 in 378,879 seconds. For average 7. ee k = 15, the ASA
method decreased the average path length of tYe HH nr work from 4.0226 to
3.7865 after 100,000 iterations in 588,255 seconds and e proposed ERS method
decrease the average path length from 4.027% to . *~J1 in 505,043 seconds.

In Table 5, we show the comparisons ~» “*~=- Hnsuming and effect on com-
munity structures from the initial average pav. length up to an given value, and
in Table 6 we show comparison results o' 1 initial average path length down to
an given value. It can be concludea .. ~t t1.> proposed ERS method can increase

or decrease the average path le—~~th o, the HH network at a faster rate. What

more, our method retains communi. - structures well.

Table 5: Comparison re ,ults in 1creasing average path length for HH Networks

N = 5000, k =5 N = 5000, k = 10 N = 5000, k = 15

|
AS . [

ERS ERS ASA ERS ASA
APL APL APL
time(s) m time(s m time(s) m time(s) m time(s) m time(s) m
6.8607 0 0.8203 0 t 8 03|4.5 10 0 0.7598 0 0.7598(4.0226 0 0.7735 0 0.7735
7.1946 10614 0.8280 27,96 0.5. "'4 ,755 88237 0.7906 189703 0.7486(|4.1338 116092 0.7927 215998 0.7789
7.5233 30126 0.8355 "R08 0.5533(4.8204 167338 0.8105 324392 0.7592(4.2444 221877 0.8132 398953 0.7871
7.8545 65154 0.8407 4395. 7.5282|4.9645 247774 0.8232 462915 0.7659|4.3556 338066 0.8248 624121 0.7932

8.1862 109701 0.8464
8.5197 211961 0.f .16

58417 0.0.32(5.1093 349472 0.8334 — —
3893 0.4970|5.2331 468220 0.8396

4.4663 458903 0.8332 — —
4.5775 625442 0.8395

*Total num. ~ .f nodes N; average degree k; average path length APL; Run time in

” 5

second and modu.arity m; means that the corresponding average path length can

not L acl .eved within a reasonable period of time.

4.8. Tffects Of edge rewiring strateqy on RL network model

The configuration model[39] describes a way to construct an undirected
g.°ph ~a N nodes. For each node generates a degree independently from a
1. .. m variable with distribution F' and creates “stubs”. Pick two “stub” ran-

Jomly among all “stubs” in the graph and join them. Obviously, there may be

self-loops and multiple edges in the construction process. Here, we avoid the

25



485

490

495

Table 6: Comparison results in decreasing average path length for h. Netwc. ks

= 5000,k = 5 N = 5000, k = 10 N - 5000,k = 15
ERS ASA ERS ASA ERS ASA
APL APL APL - _—
time(s) m  time(s) m time(s) m  time(s) m tin, Y m  time(s) m

6.8607 0 0.8203 0 0.8203|4.5310 0 0.7598 0 0.7598(4.022¢ 0 v 735 0 0.7735
6.5457 1970 0.7996 3403 0.6884|4.3869 13248 0.7338 10518 0.7049|3.8 J9 2229C 0.7469 15441 0.7344
6.2266 4513 0.7713 16185 0.5562(4.2416 34424 0.6941 162436 0.6358(3.7 72 56144 .7085 — —

5.9136 8549 0.7292 — —  14.0969 64727 0.6348 — — |3.65 7 105910 ).6519 — —
5.5968 16134 0.6559 — — 13.9513 115552 0.5376 — — 5318 2uccs2 0.5509 — —

5.2800 174739 0.1952 — — 13.8065 378879 0.2534 — — 3.4 _ 15043 0.3233 — —

* Total number of nodes N; average degree k; averave path ler ;th APL; Run time in

” 5

seconds and modularity m; means that the correspo. 'ing average path length can

not be achieved within a reasonable period of tin.

multiple edges and self-loop by modifying ue uegree of nodes in the construction
process. In generation our random n~twork n..del, we construct edges within
communities by configuration model ac < _ding to the internal degree sequence
of G DI* = {d" (v;)|7(v;) =k}, 1 < & ~ c. We also call it a RL network model
for abbreviation.

Analogously, the topological propc.ties of RL network model are dependent
on the average degree and che n. ~ing parameter of the network. Figure 7 shows

the changes of topologicai , mopr -ties (including clustering coefficient, average

path length and mod ilar’.y) which are associated with the change of the aver-
age degree and th' mix.. ~ arameter p in the generated RL networks. In all
experiments, we set .. ~de number N = 5000, the number of communities ¢ = 10,
power-law exr on 1t of degree distribution a@ = 3, power-law exponent of com-
munity size a.. 7 .bution § = 2. We can also observe that the mixing parameter

incremer  of * 1e network will cause general decreasing clustering coefficient and

average pa.. ler gth.
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Figure 7: Structural properties of network. -eners .ed by RL model

4.8.1. Adjusting clustering coefficient in .’ network model

In this section, we adjust cluste: .., ~~efficient by edge rewiring strategy
ERS. Through several iterations, we c. 1 adjust the clustering coefficient of
the network effectively without chaw ~ing the degree distribution. We compare
the performance of our edge rew.. ‘ng su. ategy on adjusting clustering coefficient
with that of Kim’s Monte Carlo method (KMC). Figures 8-9 shows the adjusting
performance on clusterir ; coeffic'ent in networks with average degree varying
from 5 to 15 with N = 5000, , = 0.1 and ¢ = 10, where N is node number, p is
mixing parameter, a- d ¢ s co’ imunity number. The red lines correspond to the
results of our met’.od ana ie blue lines to those of KMC method. For average
degree k = 5,10 ana 5, the clustering coefficient of the initial RL network
equals to 0.0 30, .0184 and 0.0286, respectively.

timel(s)

o o
7008 0.013 .. _. 0028 0.033 D038 0.043 0048 0053 0,058 0018 0023 0028 003 003 0043 0048 0053 0025 003 00 004 0045 005 0055
clustering coefficient clustering coeffcient clustering coefficient

(a) k=5 (b) k=10 (c) k=15

r 8: Comparison results of ERS and KMC in time on RL model when increasing clus-

P

ering coefficient under different average degree
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Figure 9: Comparison results of ERS and KMC in time =n RL ~ u4el when decreasing clus-

tering coefficient under different average degree

For average degree k = 5, the KMC meth. 1 increased the clustering co-
efficient of the RL network from 0.0080 .. 0.0535 after 100,000 iterations in
30,768 seconds, the proposed ERS n. tuu. ~ creased the clustering coefficient
from 0.0080 to 0.0538 after 100,C™" iter tions in 2,699 seconds. For average
degree k = 10, the KMC method 1 creased the clustering coefficient of the
RL network from 0.0184 to 0.05.” atter 100,000 iterations in 32,736 seconds,
the proposed ERS method increased the clustering coefficient from 0.0184 to
maximum 0.0487 after 10,000 it rations in 2,739 seconds. For average degree
k = 15, the KMC met’ od inci. sed the clustering coefficient of the RL network
from 0.0286 to 0.054" a’.er 10,000 iterations in 34,504 seconds, the proposed
ERS method inc »ased the clustering coeflicient from 00.0286 to 0.0513 after
100,000 iterations in 2,4 seconds.

For avers ze d- gree k = 5, the KMC method decreased the clustering coef-
ficient of t1e RL ~etwork from 0.0080 to almost zero after 3,889 iterations in
1,182 se nd ; thr proposed ERS method can decrease the clustering coefficient
from 7.0080 te almost zero after 10,350 iterations in 272 seconds. For average
degr e k =1, the KMC method decreased the clustering coefficient of the RL
v suwork trom 0.0184 to almost zero after 13,787 iterations in 4,648 seconds and
he pror osed ERS method decrease the clustering coefficient from 0.0184 to al-
monst zero after 19,300 iterations in 514 seconds. For average degree k = 15,
he KMC method decreased the clustering coeflicient of the RL network from

0.0286 to almost zero after 21,683 iterations in 7,599 seconds and the proposed
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ERS method decrease the clustering coefficient from 0.0284 to a.. ~ost ». -0 after
40,250 iterations in 1,121 seconds.

In Table 7, we show the comparisons on time consuming - .d effect on com-

munity structures from the initial clustering coefficier ¢ up t  an given value,

s5 and in Table 8 we show comparison results from init. 1 clus ering coefficient

down to an given value. It can be concluded the, the . oposed ERS method

can increase or decrease the cluster coefficient ~f the R7, network at a faster

rate. What more, our method retains community str. -tures well.

Table 7: Comparison results in increasing clusw. ‘ng coefficient for RL Networks

N = 5000,k =5 N==.L ', k=10 N = 5000, k = 15
ERS KMC ERS KMC ERS KMC
c Ca Cq
time(s) m  time(s) m time(s) ~  time(s) m time(s) m  time(s) m

0.0081 0 0.8192 0 0.8192|0.0184 0 L 7581 U 0.7581(0.0286 0 0.7724 0 0.7724
0.0348 1353 0.8008 17070 0.7935(0.0347 1276 0.7. ¢ 14664 0.7313[0.0410 1269 0.7513 14150 0.7502

0.0615 3485 0.7702 38284 0.7707(0.0510 3u . 0.708~ 32927 0.7013[0.0534 3089 0.7256 33082 0.7204
0.0882 5993 0.7359 — — ]0.0673 5435 0.. 78 56611 0.6678|0.0658 5488 0.6967 58517 0.6973
0.1149 9290 0.6992 — — 10.0836 8789 5413 — — |0.0782 8954 0.6619 — —
0.1416 13569 0.6643 — — 10.100~ "3iac To27 — — 10.0905 13749 0.6257 — —

* Total number of nodes N; average degcee k; clustering coefficient C;; Run time in
seconds and modularity m» - . eans that the corresponding clustering coefficient can

not be achieved within ¢ ~easonab'  period of time.

Table 8: Comparisc - :sultc in decreasing clustering coefficient for RL Networks

N =500 - =5 N = 5000, k = 10 N = 5000, k = 15
ERS L ERS KMC ERS KMC
¢ ———~ - | % Ca
time(s) m  time(s) . time(s) m  time(s) m time(s) m  time(s) m

0.0081 0 0.5 92 0 0.8192|0.0184 0 0.7581 0 0.7581(0.0286 0 0.7724 0 0.7724
0.0065 13 3169 122 0.8162(0.0148 49 0.7469 326 0.7417(0.0229 108 0.7549 486 0.7451
0.0049 31 0.o. 1 288 0.8129(0.0112 107 0.7353 753 0.7249|0.0172 241 0.7332 1138 0.7147

0.0033 50 0.8117 “6 0.8117]|0.0076 182 0.7204 1362 0.7072|0.0115 408 0.7059 2156 0.6793
0.0017 & 0.7 )83 855 0.8088[0.0040 259 0.7068 1362 0.7072|0.0058 656 0.6698 3700 0.6424

0 A 8063 1183 0.8071 0 514 0.6812 4648 0.6744 0 1119 0.6278 7599 0.6092

*T . numbe  of nodes N; average degree k; clustering coefficient Cg; Run time in

¢ »conds ar 1 modularity m.

.1 8.2. Zdjusting average path length in RL network model
. T this section, we adjust average path length by edge rewiring strategy
“RS. Through several iterations, we can adjust the average path length of the

network effectively without changing the degree distribution. We compare the
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performance of our edge rewiring strategy on adjusting avera,~ pav.. length
with that of Andreas’s Simulated Annealing method(ASA®. In each iteration,
ASA method selects a pair of parallel edges to execute edge - wiring as long as
the edge exchange would change the global average ps .h leng “h to the desired
direction. In our method, we selects a pair of parallel e ~es in 2ach iteration to
calculate its local efficiency on local average path leng’.. ~ccording to (7). We
choose the edge pair with the highest local effi ‘ency to _xecute edge rewiring
every ten iterations.

In Table 9, we show the comparisons or. “ime . -~ ,;uming and effect on com-

munity structures from the initial averag~ »~*» '~

<th up to an given value, and
in Table 10 we show comparison results frou. ‘nitial average path length down
to an given value. However, there is « ne ching when improving average path
length by ASA method. Average , » " le. 2th will appear to decline and then
rise. The reason is that the A”A met.>od needs to set the initial temperature
and the drop rate of temperature, « 4 calculate the accept probability. When
the parameter setting is » uuv . asonable, it will have a greater probability to
accept the opposite situa. ~n. A' the number of iterations increases, the tem-
perature decreases gr .due'ly, producing a smaller probability of accepting the
opposite. Therefor», o st process of improving average path length appear
first decline and .. » rise. In Table 9, we find that average path length does
not increase a“ - 100,000 iterations in ASA method. However, ASA method
decreasing a ~ra‘ e path length more faster than our ERS method in Table 10.

The reasc as may be related to the different structures of the network.

5. Conclu ion

“n tw., paper, we propose a local structure based edge rewiring strategy to
vdjust t e clustering coefficient and average path length of a network. The ad-
iustiuent of one pair of edges has a larger probability to affect the local clustering
- oefficient or local average path length, which might help the algorithm escape

from local extreme and reduce the computational cost. Therefore, our edge
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Table 9: Comparison results in increasing average path length for k. Netwo. s

= 5000,k =5 N = 5000, k = 10 N - 5000,k = 15
APL ERS ASA APL ERS ASA AP - ERS ASA
time(s) m  time(s) m time(s) m  time(s) m tin. ©  m  time(s) m
6.5352 0  0.8192 0  0.8192(4.2682 0  0.7581 0  0.7581|3.808" 0 . 724 0  0.7724
6.8642 6969 0.8259 122270 0.4048(4.4407 93836 0.7931 — — [3.9 >9 11658 0.7956 — —
7.1934 19299 0.8332 162491 0.4048(4.4631 185925 0.8157 — — |4.C 24 229563 .8121 — —
7.5226 35938 0.8400 203814 0.3778(4.7863 289069 0.8306  — — [4.35 " 338066 ).8248 — —
7.8518 71349 0.8441 242440 0.3516(4.9582 395133 0.8406  — — 2988 buo.02 0.8375  — —
8.3849 154465 0.8503 — — |[5.1310 526487 0.8473 — —  [4.3# . 7941 0.8403 — —

* Total number of nodes N; average degree k; averave path ler ;th APL; Run time in
seconds and modularity m; - means that the correspou. g clustering coefficient can

not be achieved within a reasonable period of tin.

Table 10: Comparison results in decreasing average ath length for RL Networks

N = 5000,k =5 =10

ERS

N = 5000,
ER”

Ac A ERS ASA

APL APL

APL

time(s) m time(s) m .. ) m time(s) m

time(s) m

6.5352 0
2783
6609
12737
23567
148180 0.2339

0.8192 0
0.7973 796
0.7669 1883
0.7203 4284
9020
34450

0.8192
0.7789
0.7273
0.6355

4.2682 0 0.7. 7 0
4.1786 1C 0.738. 2691
4.0875 2793 0. %6 6629
3.9978 54023 . 6625 12400 0.6282
23177 0.5402
58223 0.3738

0.7581
0.7273
0.6848

3.8080 0
3.7252 23454 0.7516
3.6419 62720 0.7153
126116 0.6574

0.7724 0

4950
12679
27950 0.6274
66196 0.5014
651458 0.2891

0.7724
0.7425
0.6988

6.2900
6.0524
5.8069 3.5579
3.4742 237625 0.5572
3.3905

5.5675 0.6413 0.5113]3.908& R 59

M

5.3175 0.2825(3.8170 39. "9 0.2580 565787 0.3233

* Total number of nodes N’ ~verage degree k; average path length APL; Run time in

seconds and modularity - ..

rewiring strategy car pro ide border adjustment range of clustering coefficient
and average path lragth . v asonable computing time. Experiment results show
that our edge re virw. = strategy can provide a boarder adjusting range for clus-
tering coeffici- uv  nd average path length than standard Monte Carlo method
and the Simu. + d Annealing method under the same computation condition.
As pe t of che future work, we can consider the numerous microscopic rules
such as the ~refr ential attachment and triadic closure when adjusting topolog-
ical 2atures »f network. Besides, we can further consider the internal structure
of the

atw rk, such as motif distribution.
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