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Abstract

Synthetic networks can be generated to mimic the dynamics and evolution

of complex interconnected systems in real world. Many network models have

been established based on various structure and topological characteristics, such

as degree distribution, clustering coefficient, mixing parameter, etc. These gen-

erated network models can serve as null models in hypothesis testing to assess

nontrivial results about real world data in terms of statistical significance and

generality. Therefore, researchers have actively pursued the development of

network generation models with some given topological characteristics. So far,

Standard Monte Carlo method and Simulated Annealing method are popular

to adjust the clustering coefficient and average path length of the existing net-

works. However, these methods require a large number of calculations and are

easy to fall into local extremes, which might limit the adjusting range of the

algorithm. In order to reduce the amount of calculation and expand the range of

adjustment, we propose a local structure based edge rewiring method to adjust

the clustering coefficient and average path length of the network. By selecting

of an appropriate local neighborhood of the node, we compute the ‘local’ clus-

tering coefficient and ‘local’ average path length on the “local neighborhood”,

and then calculating cost in each adjusting iteration is greatly reduced. Focus-

ing on the “local neighborhood” strategy helps the algorithm escape from local
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extreme. Therefore, our edge rewiring strategy provides a border adjustment

range of clustering coefficient and average path length in reasonable computing

time. Experiment results show that our edge rewiring strategy can provide a

boarder adjusting range for clustering coefficient and average path length than

standard Monte Carlo method and the Simulated Annealing method under the

same computation condition.

Keywords: network generation model, edge rewiring, clustering coefficient,

average path length, community structure

1. Introduction

Complex networks[1, 2] are currently being studied across many fields of

science and engineering. A complex network is a set of items, with connections

between them. Examples of complex networks include the Internet[3], WWW,

social networks[4], protein interaction network[5], gene-regulatory network and5

economic network. Real complex networks cannot be easily accessed or even

duplicated and may grow too slow for decisions based on their structure to be

taken. Therefore, researchers have actively pursued the development of network

generation models to mimic the creation and evolution of complex networks

emerging from a variety of real world interconnected systems. Network genera-10

tion models have a number of benefits and applications[6], as they can serve as a

null model in hypothesis testing, allowing nontrivial results regarding real world

data to be easily assessed in terms of statistical significance and generality.

It is necessary to study and comprehend the structural characteristics of

real-world complex networks, and then establish appropriate mathematical net-15

work models. Many cases studying on various real-world networks have been

reported from different perspectives. The networks with small-world effect[7]

always have higher clustering coefficient and shorter average path length; the

networks with scale-free feature[8] obey power-law degree distribution; the net-

works with community structures[9, 10] could be divided into some groups such20

that many links connecting nodes of the same group and comparatively few links
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joining nodes of different groups. Among various structural characteristics to de-

pict the topology and dynamics of a complex network, the clustering coefficient

and average path length of a network are the two important attributes contain-

ing significant information concerning its topological structure. The clustering25

coefficient of a network indicates how well connected a node is to its neighbors

and how compact the network is locally. The average path length expresses

a global characteristic of the network regarding the average number of steps

required to reach any two nodes. The coincidence of short average path length

and high clustering coefficient is a general feature of a complex network. How30

to adjust the clustering coefficient and average path length of a network model

has attracted more and more interest. Standard Monte Carlo method and Sim-

ulated Annealing method are popular to adjust the clustering coefficient and

average path length of the existing networks. However, these methods require

a large number of calculations and are easy to fall into local extremes, which35

might limit the adjusting range of the algorithm.

In this paper, we propose a local structure based edge rewiring strategy

to adjust the clustering coefficient and average path length of the network.

By selecting of an appropriate local neighborhood of the node, we compute

the ‘local’ clustering coefficient and ‘local’ average path length on the “local40

neighborhood”, instead of computing clustering coefficient and average path

length on the whole network. By doing that, we save calculating costs in each

adjusting iteration. What more, the adjustment of one pair of edges might not

affect the clustering coefficient or average path length of the whole network,

which might lead an algorithm fall into local extreme. The adjustment of one45

pair of edges has a larger probability to affect the local clustering coefficient

or local average path length, which might help the algorithm escape from local

extreme. Therefore, our edge rewiring strategy can provide border adjustment

range of clustering coefficient and average path length in reasonable computing

time. Experiment results show that our edge rewiring strategy can provide a50

boarder adjusting range for clustering coefficient and average path length than

standard Monte Carlo method and the Simulated Annealing method under the
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same computation condition.

The rest of the paper is organized as follows. In Section 2, we provide some

basic terminologies and notations used in this paper, and introduce some dom-55

inant edge rewiring methods in the literatures briefly. In Section 3, we present

our edge rewiring method (ERS) in detail. In Section 4, we show experiment re-

sults of our edge rewiring method (ERS) compared with standard Monte Carlo

method and the Simulated Annealing method. We conclude possible future

directions of our research in Section 5.60

2. Related Work

2.1. Notations

A network (or a graph) G with N nodes and M edges can be denoted as

G = (V,E), where V = {v1, v2, · · · , vN} and E is the edge set of G. We

only consider simple graph here. The neighborhood of node vi ∈ V is denoted65

as NG(vi) = {vj | vj ∈ V, vivj ∈ E}. Let dG(vi) = |NG(vi)| represents the

degree of node vi. The degree sequence D of G is the non-increasing sequence

of its node degrees, say D = (dG(v1), dG(v2), · · · , dG(vN )). A sequence d =

{d1, d2, · · · , dn} of nonnegative integers is called a graphical sequence if there is

a simple graph G = (V,E) with degree sequence d. In this case we also say that70

G realizes d. We use kG, ∆(G) and δ(G) to denote average degree, maximum

degree and minimum degree of G, respectively. An induced subgraph G[S] is a

graph whose node set is S ⊆ V and whose edge set consists of all of the edges in

E that have both endpoints in S. We write [S] to denote the induced subgraph

by node subset S when without causing confusion. Readers are referred to [11]75

for terminations not mentioned here in detail.

The degree distribution is defined by a probability function, p(d), which can

be understood as the probability that a randomly picked node has degree d,

where each node has an equal probability to be picked. A network is scale-

free if its degree distribution has a power-law form and is independent of the80

connectivity scale[11, 12]. In a scale-free network, the possibility for a node with
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Table 1: Typical statistical indicators of the complex network instances[2]

Network Type N k APL CG α

physics coauthorship Undirected 52909 9.27 6.19 0.56 −
Student relationship network Directed 573 1.66 16.01 0.001 −

WWW nd.edu Directed 269504 5.55 11.27 0.29 2.1/2.4

word co-occurrence Undirected 460902 70.13 − 0.44 2.7

software classes Directed 1377 1.61 1.51 0.012 −
electronic circuits Undirected 24097 4.34 11.05 0.03 3

protein interactions Undirected 2115 2.12 6.8 0.071 2.4

freshwater food web Directed 92 10.84 1.90 0.087 −

* Basic statistics for a number of published networks. The properties measured are:

type of graph, directed or undirected; total number of nodes N ; average degree k;

average path length APL; clustering coefficientCG ; exponent α of degree distribution

if the distribution follows a power law (or “−” if not; in/out-degree exponents are given

for directed graphs).

degree d is P (d) ∼ d−α, where α is a constant determined by the given network.

Different complex networks have different power law exponent even if the same

network in the evolution process.

For a network G, the clustering coefficient of a node vi ∈ V (G) is given by

the proportion of edges between the nodes within its neighbourhood divided by

the number of edges that could possibly exist between them, denoted as

CG(vi) =
2|E([NG(vi)])|

dG(vi)(dG(vi)− 1)
. (1)

The clustering coefficient of G is the average of the local clustering coefficients

of all nodes of G, i.e.

C(G) =
1

N

N∑

i=1

CG(vi). (2)

Let lG(vi, vj) be the shortest distance between vi and vj in G, the average

path length (APL) of G is defined as the average of the distance between all

node pairs, defined as

APL(G) =

∑
i6=j lG(vi, vj)

N(N − 1)
. (3)

The clustering coefficient of a network indicates how well connected a node85

is to its neighbors and how compact the network is locally. The average shortest
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path length expresses a global characteristic of the network regarding the aver-

age number of steps required to reach any two nodes. The coincidence of short

average shortest path length and high clustering coefficient is a general feature

of a complex network. The clustering coefficient of a small world network is90

much larger than that of the random network, C ≫ CER, whileas the average

path length of a small world network increases logarithmically with the number

of nodes, APL ∼ lnN . Table 1 shows the basic statistical indicators of some

complex network instances.

An important characteristic of these networks is the presence of commu-95

nity structures[13–15], i.e., with many links connecting nodes of the same group

and comparatively few links joining nodes of different groups. Newman in 2004

proposed modularity[9, 10] to measure the community structure of a given net-

work. Specifically, suppose V is partitioned into a set C = {C1, C2, · · · , Cc} of

c non-overlapping communities, with union
⋃

Ci∈C Ci = V . Generally, c ≪ N .100

Here, we define community size sk represent the number of the nodes which

belong to community k, i.e., sk = |Ck|. The function τ(vi) represents label of

community which node vi belong to, namely the range of values for τ(vi) is

1 ≤ τ(vi) ≤ c. The modularity of network calculation formula is (4), where the

function ω(τ(vi), τ(vj)) indicates whether the node vi and the node vj belong105

to the same community, as shown in formula (5).

m =
1

2M

N∑

i=1

N∑

j=1

(aij −
d(vi)d(vj)

2M
)ω(τ(vi), τ(vj)) (4)

ω(τ(vi), τ(vj)) =





1, τ(vi) = τ(vj)

0, τ(vi) 6= τ(vj)
(5)

Many network models have been established based on various structure and

topological characteristics, such as degree distribution, clustering coefficient,

mixing parameter, etc. ER random network, created by Erdös and Rényi, is

a completely random network[16], whose degree distribution follows a Poisson110

distribution. Watts and Strogatz proposed WS small world network[7] that
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have both features of high clustering coefficients along with short average path

lengths. Barabási and Albert proposed BA scale-free network[8] to reflect “rich

gets richer” phenomenon. There are many other models which are generaliza-

tions of these famous models, such as Leinberg navigable small-world model[17],115

EBA[18] model, fitness model[19], local world model[20], HK model[21], etc.

GN-Benchmark[10] proposed by Girvan and Newman in 2004 is one of the most

popular model with communities structures. And there are many generalization

model[22–28] of GN-Benchmark are widely used in practice, such as Weighted

GN model[22], heterogeneous GN model[23] and LFR-Benchmark model[24, 25],120

etc.

2.2. Works closely related to edge rewiring

The topological characteristics of many networks change over time. In order

to capture the empirically observed ones, there are some network generation

models that control the clustering coefficient or adjust clustering coefficient or125

average path length in exist networks.

In 2002, Holme and Kim[21] extended standard BA scale-free network model

to include a “triad formation step” when introducing new nodes. In HK model,

the clustering coefficient could be tunable by changing control parametermt–the

average number of triad formation trials per time step. In 2003, Newman pro-130

posed a model of a network[29] that has both a tunable degree distribution and a

tunable clustering through bipartite project method, projecting bipartite graph

into the individuals with probability p of knowing others with whom they share

a group. In 2004, Volz[30] used a Markov chain Monte Carlo technique to gener-

ate both a given degree distribution and a clustering coefficient by constructing135

the appropriate queue to construct a triangle with a certain probability. In

2005, Badham and Stocker[31] proposed an algorithm based on configuration

model with triangle formation for adjusting three properties of networks, con-

taining the degree distribution, the clustering and the assortativity. In 2006,

Guo and Zhou[32] proposed a simple rule that generates scale-free small-world140

networks with tunable assortative coefficient by controlling parameter p that is
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a probability of choosing neighbors. In 2010, Badham and Stocker[33] presented

a spatially constructed algorithm that generates networks with constrained but

arbitrary degree distribution, clustering and assortativity by controlling prob-

ability p in create edge process. The above methods can control clustering145

coefficient in generation of a network. However, they can not be used to adjust

topological attributes(including clustering coefficient) of an existing network.

In 2002, Maslov and Sneppen[34] proposed an edge exchange method that

randomly choose two edges (say, connecting nodes A and B, and nodes C and

D), and then alter the original edges AB and CD to AC and BD, provided150

that none of these edges already exist in the network. The important property

of the edge exchange method is that this process does not change the degree of

each node. However, a blind repetitions of the above edge exchanges have been

shown to destroy all degree-degree correlations.

In order to study the performance of networks of artificial neurons with focus155

on the role of the clustering coefficient, Kim in 2004 introduced an algorithm[35]

to control the clustering coefficient of a given network with the degree of each

node kept fixed and guarantee the direction of each adjustment. Kim’s algorithm

randomly chooses two edges and then rewires to have different end nodes, and

accepts the edge trial only when the new network configuration has higher (or160

lower) clustering coefficient. This is the standard Monte Carlo(denoted as KMC

in following) simulation at zero temperature with the Hamiltonian H :

H =
∑

v

cv

where cv is the clustering coefficient of the node v, Kim’s algorithm could guar-

antee the direction of each adjusting of clustering coefficient with the degree of

nodes kept unchanged. The detailed description of KMC algorithm is shown in165

Algorithm 1. In KMC method, we need to input a user-specified value, called

desire clustering coefficient. If the cluster coefficient is to be increased (or de-

creased), then we would accept the edge trial that could lead to a higher (or

lower) clustering coefficient of the network. The edge trial would be performed
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iteratively until the desired clustering coefficient or the maximum iteration is170

reached.

Algorithm 1Monte Carlo simulation (KMC) for adjusting clustering coefficient

Input: Graph G, the desired value f ′ of clustering coefficient,

the maximum iteration maxt = 100000, threshold ε = 0.0001;

Output: GraphG′ with the value of clustering coefficient approximately equal

to f ′.

1: Let t=0, G(0) = G;

2: Calculate f(G(t)), the value of clustering coefficient of G(0);

3: Calculate E(C) = |f(Gt)− f
′ |

4: while (|f(G(t))− f
′ | ≥ ε) and (t < maxt) do

5: t← t+ 1;

6: Select randomly an edge pair 〈x1x2, x3x4〉 from G satisfying xixj 6∈ E for

i ∈ {1, 2} and j ∈ {3, 4};
7: Let G′

t = G ∪ {x1x3, x2x4} − {x1x2, x3x4};
8: Calculate E(C′) = |f(G′

t)− f
′ |

9: if (E(C′) < E(C)) then

10: Gt = G′
t;

11: else

12: Gt = G′
t − {x1x3, x2x4} ∪ {x1x2, x3x4};

13: end if

14: end while

To study the influence of average path length on the emergency dynamics

of the majority-rule model, Andreas et al. in 2015 proposed an edge rewiring

method[36] based on Simulated Annealing (denoted as ASA in following) to

tuning the average path length of a network to a user-specified value. The ob-175

jective of ASA method is to minimize the difference between the current average

path length and the target average path length, i.e., E(L) = ||L−Ltarget||. The
algorithm selects randomly two edges AB and CD such that each of them do

not have any common neighbors. Then, rewiring the edges and evaluating the
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new average path length of the network L
′
and the corresponding objective180

function E(L
′
). Then, algorithm ASA accepts or rejects the new configuration

using the Metropolis procedure, i.e., if E(L
′
) < E(L), ASA would accept the

edge exchanges; otherwise, it would accept the edge exchanges with a proba-

bility e−
E(L

′
)−E(L)

Temp , where Temp is the system’s pseudo-temperature and would

decrease in the way of annealing scheme. In ASA, the initial systems pseudo-185

temperature was set to Temp=10, and the pseudo-temperature decreased 10%

every 200 steps. The initial pseudo-temperature and the drop of temperature

of ASA might limit the adjusting of average path length to a very small range.

The detailed description of ASA algorithm is shown in Algorithm 2.

Among the above method, adjusting the clustering coefficient or average190

path length of the whole network is computationally costly, and easy to fall

into local extremum. In order to make use of local information of a network to

reduce the computational cost, as well as help our algorithm escaping from local

extreme, we propose an edge rewiring strategy(ERS) to adjust the clustering

coefficient and average path length in a local region of a network. The proposed195

ERS method could provide a boarder adjusting range for clustering coefficient

and average path length of the network under consideration.

3. Edge Rewiring Method

The main idea of our edge rewiring strategy (ERS) is to adjust the clustering

coefficient and the average path length in a local region of a given network. The200

scheme of the proposed ERS method can be divided into two steps. In the first

step, we randomly choose edge pairs and then rewire each pair to have different

end nodes, provided that none of new edges already exist in the network. In

the second step, we accept the edge pair with highest local efficiency function

to execute edge exchange operation based on standard Monte Carlo simulation205

at zero temperatures to save calculating costs and escape from local extreme.

One can adjust the clustering coefficient or average path length of a network to

a user-specified value by running the edge rewiring strategy iteratively.

10



Algorithm 2 Simulated Annealing (ASA) for adjusting average path length

Input: Graph G, the desired value f ′ of average path length,

the maximum iteration maxt = 100000, threshold ε = 0.0001,

the initial systems pseudo-temperature, say Temp(Temp=10),

the annealing scheme, the pseudo-temperature decreased 10%

every 200 steps;

Output: Graph G′ with the value of average path length approximately equal

to f ′.

1: Let t=0, G(0) = G;

2: Calculate f(G(t)), the value of average path length approximately of G(0);

3: Calculate E(APL) = |f(Gt)− f
′ |

4: while (|f(G(t))− f
′ | ≥ ε) and (t < maxt) do

5: t← t+ 1;

6: Select randomly an edge pair 〈x1x2, x3x4〉 from G satisfying:

7: (i)xixj 6∈ E for i ∈ {1, 2} and j ∈ {3, 4};
8: (ii) NG(xi)

⋂
NG(xj) = ∅ for i, j ∈ {1, 2, 3, 4}

9: Let G′
t = G ∪ {x1x3, x2x4} − {x1x2, x3x4};

10: Calculate E(APL′) = |f(G′
t)− f ′|

11: if (E(APL′) < E(APL)) then

12: Gt = G′
t;

13: else

14: Calculate probability = e
−(E(L′)−E(L))

Temp

15: if (Random number < probability) then

16: Gt = G′
t;

17: else

18: Gt = G′
t − {x1x3, x2x4} ∪ {x1x2, x3x4};

19: end if

20: end if

21: Reduce the system pseudo-temperature according to the annealing sched-

ule

22: end while
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An edge exchange operation on edge pair 〈x1x2, x3x4〉 is to rewire the edges

between xi’s, that is to say, delete edges {x1x2, x3x4} from G and add edges210

{x1x3, x2x4} to G. Obviously, edge exchange operations keep the degree of

every node unchanged. Hence, we can execute edge exchange operations to

adjust the value of the concerning topological properties without changing the

degree distribution of the network. If an edge exchange operation on edge pair

〈x1x2, x3x4〉 could change the value of the concerning topological property (here,215

we only take clustering coefficient or average path length in consideration) of the

network to the desired direction, we call it an effective exchange; Otherwise, it

is an ineffective exchange. To determine whether an edge exchange operation be

effective, we should calculate the clustering coefficient (or average path length)

of the network before and after the edge exchange operation. This would require220

a large number of calculations and is easy to fall into local extremes, which might

limit the adjusting range of the algorithm.

Calculating the local effectiveness of an edge change operation is a good

choice for saving calculating costs and escapes from local extreme. Therefore, we

construct efficiency function to show the local effectiveness of an edge exchange225

operation on clustering coefficient and average path length. We randomly select

two parallel edges x1x2 ∈ E and x3x4 ∈ E from G, satisfying that xixj 6∈ E for

i = 1, 2 and j = 3, 4. Then we accept the edge exchange operations based on

standard Monte Carlo simulation at zero temperatures to reach a user-specified

value by running edge rewiring strategy iteratively.230

3.1. Local effectiveness of edge pairs on adjusting clustering coefficient

For a network G, let x1x2 and x3x4 be two edges of G. Let G′ be the

new graph obtain from G by executing the edge exchange operation on edge

pair 〈x1x2, x3x4〉. We denote CG(xi) be the clustering coefficient of node vi

in G and CG′(xi) be the clustering coefficient of node vi in G′. We use an

efficiency function LC(x1x2, x3x4) to estimate the local effectiveness of an edge

pair 〈x1x2, x3x4〉 on adjusting the clustering coefficient of the network, defined

12



as

LC(x1x2, x3x4) =

4∑

i=1

(
CG(xi)− CG′(xi)

)
. (6)

3.2. Local effectiveness of edge pairs on adjusting average path length

For a network G, let x1x2 and x3x4 be two edges of G. Let G′ be the new

graph obtain from G by executing the edge exchange operation on edge pair

〈x1x2, x3x4〉. Let N1 =
4⋃

i=1

NG(xi), then N1 =
4⋃

i=1

NG′(xi). We consider the

variation of shortest path length between nodes in N1 after executing edge ex-

change operation on 〈x1x2, x3x4〉. We use a efficiency function LP (x1x2, x3x4)

to estimate the local effectiveness of an edge pair 〈x1x2, x3x4〉 on adjusting the

average path length of the network, defined as

LP (x1x2, x3x4) =
∑

i6=j,vi,vj∈N1

(
lG(vi, vj)− lG′(vi, vj)

)
. (7)

3.3. Adjusting strategy for retaining community structure

For a network G with community structure, it is always expected that ad-

justing the clustering efficient (or average path length) of G as much as possible235

without changing the original community structures of G. It turns out the

clustering coefficient or the average path length increases with the community

structure strength[37].

Let G′ be another network having identical degree sequence and community

structure with G by executing a sequence of edge exchange operations from G.240

If we alter some edges between communities to edges within communities, then

the clustering coefficient (or the average path length) of G′ is more likely greater

than that of G. If we alter some edges within communities to edges between

communities, then the clustering coefficient (or the average path length) of G′

is more likely smaller than that of G.245

Based on the above analysis, to keep the community structure of a network

unchanged as much as possible after edge exchange operations, the probability

that an edge selected between communities should be greater than an edge

selected within communities when increasing the clustering coefficient (or the

13



average path length), whileas the probability that an edge selected between250

communities should be smaller than an edge selected within communities when

decreasing the clustering coefficient (or the average path length).

However, an increased (a decreased) local effectiveness of an edge pair on

adjusting clustering coefficient or the average path length might not indicate

the edge pair lies in between (within) communities, owing to that an increase255

(a decrease) of local effectiveness might not lead to an increase (a decrease)

of the corresponding topological property value of the whole network. If we

execute edge exchange operation once the change of local effectiveness of an

edge pair coinciding to the desired direction, then the probability of an edge

between communities selected might be approximately equal to the probability260

of an edge within communities selected after frequent edge exchange operations.

Thus, the community structure of the network might be weaken after frequent

edge exchange operations. Moreover, the convergence speed of adjusting might

be limited. Thereby, the adjusting range of the clustering coefficient and the

average path length might be further affected.265

To retain the community structure as much as possible, we randomly se-

lect multiple parallel edge pairs from G at one time, such that each edge pair

〈x1x2, x3x4〉 satisfies xixj 6∈ E for i ∈ {1, 2} and j ∈ {3, 4} and nodes involved

in the edge pair are mutually distinct. Then we choose the edge pair with

maximum (or minimum) value of local effectiveness to execute edge exchange270

operation on the edge pair. We select ten parallel edge pairs from G at one time

in following experiments.

Algorithm 3 gives the edge rewiring strategy ERS for adjusting clustering

coefficient or average path length described above. We use “TP” to represent

the corresponding topological parameter, which depends on actual situation.275

We provide an illustration example to explain why the proposed edge rewiring

strategy can retain the community structure. As is shown in Figure 1, the clus-

tering coefficient is increased from 0.1849 to 0.3407 by our edge rewiring strategy,

community structure has not changed too much. In our edge rewiring strategy,

we select ten parallel edge pairs from G at one time, then choose the edge pair280

14



Algorithm 3 Edge rewiring strategy for adjusting TP

Input: Graph G, the desired value f ′ of TP ,

the maximum iteration maxt = 100000, threshold ε = 0.0001;

Output: Graph G′ with the value of TP approximately equal to f ′.

1: Let t=0, G(0) = G;

2: Calculate f(G(t)), the value of TP of G(0);

3: while (|f(G(t))− f
′ | ≥ ε) and (t < maxt) do

4: t← t+ 1;

5: for iter=1 to 10 do

6: Select randomly an edge pair 〈x1x2, x3x4〉 from G satisfying xixj 6∈ E

for i ∈ {1, 2} and j ∈ {3, 4};
7: Let G′

iter = G ∪ {x1x3, x2x4} − {x1x2, x3x4};
8: end for

9: Let Gt = G′
m, where G′

m = argmax{f(G′
y)|y = 1, 2, · · · , 10};

10: end while

with maximum value of local effectiveness to execute edge exchange operation

on the edge pair. Therefore, the probability that an edge selected between

communities should be greater than an edge selected within communities when

improving the clustering coefficient. In the process, we can adjust clustering

coefficient faster and keep the community structure of a network unchanged as285

much as possible after edge exchange operations. When the original network has

the ground-truth community structure information, our edge rewiring strategy

would keep the original community structure as much as possible.

3.4. Complexity analysis

It takes O(N ∗(k)2) to compute the clustering coefficient and O(N ∗(N+M))290

to compute the average path length of the whole network after each edge rewiring

operation in average for a network with N nodes and M edges. Let k be the

average degree of the network.

Let tKMC be the iteration number for adjusting clustering coefficient using
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Figure 1: The dynamics of an example network using ERS strategy

KMC algorithm, then the time complexity of KMC algorithm takes is O(tKMC ∗295

N ∗ k2). Let t′ASA be the iteration number for adjusting average path length

using ASA algorithm, then the average time complexity of ASA algorithm takes

is O(t′ASA ∗N ∗ (N +M)) = O(t′ASA ∗ k ∗N2).

In ERS algorithm, we calculate the local effectiveness of an edge change

operation to determine whether an edge exchange operation should be ac-300

cepted instead of global characteristic values. The average time complexity

of calculating the clustering coefficient of local structure is O(4 ∗ k2), and the

time complexity of calculating the average path length of local structure is

O(4k ∗ (4k + 2k ∗ k) = O(8k
3
). Let tERS and t′ERS be the iteration number

for adjusting clustering coefficient and average path length by ERS algorithm,305

respectively, then ERS algorithm with take O(4∗ tERS ∗k
2
) and O(8∗ t′ERS ∗k

3
)

for adjusting clustering coefficient and average path length by ERS algorithm,

respectively.

We have tERS < tKMC∗ and t′ERS < t′ASA, since our local strategy could

help algorithm escaping from local extreme efficiently to save calculating costs.

For a large network, we always have k << N , hence we have

4 ∗ tERS ∗ k
2
<< tKMC ∗N ∗ k

2
;

8 ∗ t′ERS ∗ k
3
<< t′ASA ∗ k ∗N2.

Hence, our ERS could provide border adjustment range of clustering coefficient
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and average path length in reasonable computing time. Table 2 shows the310

algorithm complexity of KMC, ASA and ERS methods.

Table 2: Summary of complexity analysis

Method Adjust C Adjust APL

ERS O(4 ∗ tERS ∗ k
2
) O(8 ∗ t′ERS ∗ k

3
)

KMC O(tKMC ∗N ∗ k
2
) −

ASA − O(t′ASA ∗ k ∗N2)

* The number of nodes of network N , the average degree of network

k. tERS and t′ERS are the iteration number for adjusting clustering

coefficient and average path length by ERS algorithm. tKMC is the

iteration number for adjusting clustering coefficient using KMC algo-

rithm. t′ASA is the iteration number for adjusting average path length

using ASA algorithm.

4. Experimentation

4.1. Artificial network models

We construct two artificial network models with community structure to

validate the feasibility and reliability of the proposed edge rewiring strategy315

ERS. Note that real networks are characterized by heterogeneous distributions

of node degree and community sizes, i.e., the tails of the distributions of the

networks’ node degree and community sizes can be fairly well approximated

by a power law. When constructing artificial network models, we should take

into account the heterogeneous distributions in networks to mimic the real-320

world networks. We generate artificial networks whose degree sequence and

community size sequence which obey scale free distribution.

We firstly generate a reference degree sequence D = {d1, . . . , dN} with prob-

ability p(di) according to the power law distribution given by (8),

p(di) =
α− 1

δ(G)

(
di

δ(G)

)−α

. (8)
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where d1 ≥ d2 . . . ≥ dN , ∆(G) ≥ di ≥ δ(G), α is the power exponent and α = 3

in the following generation process. We might trim slightly some items of the

generated sequence to make D graphical.325

Similarly, we generate community size sequence {s1, . . . , sc} obeys power law
distribution, where c is the predefined number of communities, s1 ≤ s2 . . . ≤ sc

and
∑c

k=1 si = N .

We use mixing parameter µ, the ratio between the external degree of a node

with respect to its community and the total degree of the node, to control the330

level of community structures in our network model. A smaller µ results in

networks with higher level of community structures.

For node vi, we define its internal degree and external degree according to

the mixing parameter µ as (9):

din(vi) = ⌊d(vi)× (1− µ) + 0.5⌋,

dex(vi) = d(vi)− din(vi),
(9)

where din(vi) denotes the number of adjacent nodes that lie in the same com-

munity as vi, and dex(vi) denotes the number of adjacent nodes that lie in the

different community from vi.335

Each node would be prior to be distributed the communities with smaller

size, provided that the internal degree of the node is no larger than the size of

the community. Edges connecting different communities are linked randomly ac-

cording to the external degree sequence Dex = {dex(v1), dex(v2), . . . , dex(vN )}.
We add edges within communities by two different generation models: Havel-340

Hikimi model[38] to generate communities with high assortative mixing, which

is defined as “a preference for high-degree nodes to attach to other high-degree

nodes”; and configuration model[39] to generate communities with random links.

See details in Section 4.2 and 4.3.

Our experimentation has been conducted on two computer-generated net-345

works to prove the validity and effectiveness of the proposed method. We com-

pare the performance of the proposed edge rewiring strategy to Monte Carlo

methods given by Kim and Simulated Annealing method proposed by Andreas
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et al., respectively. All the experiments have been carried on Windows 10 plat-

form, running on a PC with Intel Core CPU i7-2600@3.40 GHz and 8 GB RAM.350

The programming language is Java.

4.2. Effects of edge rewiring strategy on HH network model

Havel-Hakimi algorithm[38] can be used to generate a network from a graph-

ical degree sequence. The networks generated by Havel-Hikimi algorithm are

always assortative, that is to say, there is a preference for high-degree nodes355

to attach to other high-degree nodes. In generation our Havel-Hikimi network

model, we construct edges within communities by Havel-Hikimi algorithm ac-

cording to the inter-degree sequence of G, Din
k = {din(vi)|τ(vi) = k}, 1 ≤ k ≤ c.

We also call it a HH network model for abbreviation.

The topological properties of HH network model are dependent on the av-360

erage degree and the mixing parameter of the network. The average degree

reflects the density of a network. The average degree increment of the network

will cause general increasing clustering coefficient and general decreasing aver-

age path length, and vise versa. However, the community structure of a network

has no relation with the average degree, but has a significant relation with the365

mixing parameter µ. Along with the increasing mixing parameter, the modu-

larity of the network will decrease, which means the community structure of the

network is disappearing gradually. Figure 2 shows the changes of topological

properties (including clustering coefficient, average path length and modular-

ity) which are associated with the change of the average degree and the mixing370

parameter µ in the generated HH networks. In all experiments, we set node

number N = 5000, the number of communities c = 10, power-law exponent of

degree distribution α = 3, power-law exponent of community size distribution

β = 2.

From Figure 2, we can also observe that the mixing parameter increment375

of the network will cause general decreasing clustering coefficient and average

path length. This is as expected because a higher value of mixing parameter

will lead to formation of edges to long distance neighbours which reduces the
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global path length and decreases the chances of triads in network.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

mixiing parameter

0

0.05

0.1

0.15

0.2

0.25

cl
us

te
rin

g 
co

ef
fic

ie
nt

average degree=5
average degree=10
average degree=15

(a) Impact of mixing parame-

ter (µ) and average degree (k)

on clustering coefficient

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

mixiing parameter

3.5

4

4.5

5

5.5

6

6.5

7

av
er

ag
e 

pa
th

 le
ng

th

average degree=5
average degree=10
average degree=15

(b) Impact of mixing parame-

ter (µ) and average degree (k)

on average path length

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

mixiing parameter

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

M
od

ul
ar

ity

average degree=5
average degree=10
average degree=15

(c) Impact of mixing parame-

ter (µ) and average degree (k)

on modularity

Figure 2: Structural properties of networks generated by HH model

4.2.1. Adjusting clustering coefficient in HH network model380

In this section, we adjust clustering coefficient by edge rewiring strategy

ERS. Through several iterations, we can adjust the clustering coefficient of

the network effectively without changing the degree distribution. We compare

the performance of our edge rewiring strategy on adjusting clustering coefficient

with that of Kim’s Monte Carlo method(KMC). In each iteration, KMC method385

selects a pair of parallel edges to execute edge rewiring as long as the edge

exchange would change the global clustering coefficient to the desired direction.

In our method, we select a pair of parallel edges in each iteration to calculate

its local efficiency on local clustering coefficient according to (6). We choose the

edge pair with the highest local efficiency to execute edge rewiring every ten390

iterations.

Figures 3-4 show the adjusting performance on clustering coefficient in net-

works with average degree varying from 5 to 15 with N = 5000, µ = 0.1 and

c = 10, where N is node number, µ is mixing parameter, and c is community

number. The red lines correspond to the results of our method and the blue395

lines to those of KMC method. For average degree k̄ = 5, 10 and 15, the clus-

tering coefficient of the initial HH network equals to 0.1850, 0.2065 and 0.2274,

respectively.
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Figure 3: Comparison results of ERS and KMC in time on HH model when increasing clus-

tering coefficient under different average degree
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Figure 4: Comparison results of ERS and KMC in time on HH model when decreasing clus-

tering coefficient under different average degree

For average degree k̄ = 5, the KMC method increased the clustering co-

efficient of the HH network from 0.1850 to 0.1963 after 100,000 iterations in400

29,995.50 seconds, the proposed ERS method increased the clustering coeffi-

cient from 0.1850 to 0.1963 after 100,000 iterations in 2,542.41 seconds. For

average degree k̄ = 10, the KMC method increased the clustering coefficient of

the HH network from 0.2065 to 0.2107 after 100,000 iterations in 31,455.78 sec-

onds, the proposed ERS method increased the clustering coefficient from 0.2065405

to 0.2107 after 100,000 iterations in 2,706.00 seconds. For average degree k̄ = 15,

the KMC method increased the clustering coefficient of the HH network from

0.2274 to 0.2300 after 100,000 iterations in 33,922.76 seconds, the proposed ERS

method increased the clustering coefficient from 0.2274 to 0.2297 after 100,000

iterations in 2,741.07 seconds.410

For average degree k̄ = 5, the KMC method decreased the clustering co-
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efficient of the HH network from 0.1850 to almost zero after 11,000 iterations

in 3,012.42 seconds; the proposed ERS method can decrease the clustering co-

efficient from 0.1850 to almost zero after 20,000 iterations in 516.36 seconds.

For average degree k̄ = 10, the KMC method decreased the clustering coeffi-415

cient of the HH network from 0.2065 to almost zero after 25,000 iterations in

7,873.55 seconds and the proposed ERS method decrease the clustering coeffi-

cient from 0.2065 to almost zero after 59,000 in 1,567.17 seconds. For average

degree k̄ = 15, the KMC method decreased the clustering coefficient of the HH

network from 0.2274 to almost zero after 37,000 iterations in 12,892.20 seconds420

and the proposed ERS method decrease the clustering coefficient from 0.2274

to almost zero in 2605.56 seconds.

In Table 3, we show the comparisons on time consuming and effect on com-

munity structures from the initial clustering coefficient up to an given value,

and in Table 4 we show comparison results from initial clustering coefficient425

down to an given value. It can be concluded that the proposed ERS method

can increase or decrease the clustering coefficient of the HH network at a faster

rate. What more, our method retains community structures well.

Table 3: Comparison results in increasing clustering coefficient for HH Networks

N = 5000, k̄ = 5 N = 5000, k̄ = 10 N = 5000, k̄ = 15

CG
ERS KMC

CG
ERS KMC

CG
ERS KMC

time(s) m time(s) m time(s) m time(s) m time(s) m time(s) m

0.1850 0 0.8202 0 0.8202 0.2065 0 0.7598 0 0.7598 0.2274 0 0.7735 0 0.7735

0.1940 1814 0.8115 22395 0.8115 0.2095 1877 0.7580 15816 0.7578 0.2294 2293 0.7729 25394 0.7731

0.2030 3884 0.8003 47861 0.7995 0.2125 4051 0.7546 46445 0.7549 0.2314 4570 0.7719 54425 0.7729

0.2120 6459 0.7879 70821 0.7912 0.2155 6090 0.7518 69706 0.7519 0.2334 7226 0.7715 81266 0.7728

0.2210 9254 0.7742 — — 0.2185 8437 0.7494 — — 0.2354 10127 0.7714 — —

0.2341 12756 0.7581 — — 0.2243 13422 0.7451 — — 0.2379 13473 0.7711 — —

* Total number of nodes N ; average degree k; clustering coefficient CG; Run time in

seconds and modularity m; ”-” means that the corresponding clustering coefficient can

not be achieved within a reasonable period of time.

4.2.2. Adjusting average path length in HH network model

In this section, we adjust average path length by edge rewiring strategy430

ERS. Through several iterations, we can adjust the average path length of the

network effectively without changing the degree distribution. We compare the
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Table 4: Comparison results in decreasing clustering coefficient for HH Networks

N = 5000, k̄ = 5 N = 5000, k̄ = 10 N = 5000, k̄ = 15

CG
ERS KMC

CG
ERS KMC

CG
ERS KMC

time(s) m time(s) m time(s) m time(s) m time(s) m time(s) m

0.1850 0 0.8202 0 0.8202 0.2065 0 0.7598 0 0.7598 0.2274 0 0.7735 0 0.7735

0.1480 38 0.7994 122 0.7766 0.1652 114 0.7325 293 0.7108 0.1820 176 0.7448 528 0.7182

0.1110 84 0.7740 300 0.7276 0.1239 255 0.7002 706 0.6498 0.1366 398 0.7089 1218 0.6530

0.0740 135 0.7453 538 0.6739 0.0826 439 0.6573 1281 0.5774 0.0912 692 0.6615 2146 0.5758

0.0370 205 0.7069 897 0.6139 0.0413 712 0.5958 2270 0.4870 0.0458 1135 0.5923 3721 0.4723

0 506 0.5864 3012 0.5395 0 1565 0.4470 7873 0.3533 0 2605 0.4141 12892 0.3003

* Total number of nodes N ; average degree k; clustering coefficient CG; Run time in

seconds and modularity m.

performance of our edge rewiring strategy on adjusting average path length

with that of Andreas’s Simulated Annealing method (ASA). In each iteration,

ASA method selects a pair of parallel edges to execute edge rewiring as long as435

the edge exchange would change the global average path length to the desired

direction. In our method, we select a pair of parallel edges in each iteration to

calculate its local efficiency on local average path length according to (7). We

choose the edge pair with the highest local efficiency to execute edge rewiring

every ten iterations.440

Figures 5-6 show the adjusting performance on average path length in net-

works with average degree varying from 5 to 15 with N = 5000, µ = 0.1 and

c = 10, where N is node number, µ is mixing parameter, and c is community

number. The red lines corresponds to the results of our method and the blue

lines to those of ASA method. For average degree k̄ = 5, 10 and 15, the aver-445

age path length of the initial HH network equals to 6.8607, 4.5310 and 4.0226,

respectively.

23



6.8607 7.1607 7.4607 7.7607 8.0607 8.3607 8.6607

average path length

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

tim
e/

(s
)

×105

ERS-average degree=5
KMC-average degree=5

(a) k = 5

4.531 4.581 4.631 4.681 4.731 4.781 4.831 4.881 4.931 4.981 5.031

average path length

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

tim
e/

(s
)

×105

ERS-average degree=10
KMC-average degree=10

(b) k = 10

4.0226 4.0726 4.1226 4.1726 4.2226 4.2726 4.3226 4.3726 4.4226

average path length

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

tim
e/

(s
)

×105

ERS-average degree=15
KMC-average degree=15

(c) k = 15

Figure 5: Comparison results of ERS and ASA in time on HH model when increasing average

path length under different average degree
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Figure 6: Comparison results of ERS and ASA in time on HH model when decreasing average

path length under different average degree

For average degree k̄ = 5, the ASA method increased the average path

length of the HH network from 6.8507 to 8.5197 after 100,000 iterations in

211,961 seconds, the proposed ASA method increased the average path length450

from 6.8507 to 8.5197 in 73,893 seconds. For average degree k̄ = 10, the ASA

method increased the average path length of the HH network from 4.5310 to

4.9915 after 100,000 iterations in 490,077 seconds, the proposed ERS method

increased the average path length from 4.5310 to 5.2331 after 100,000 iterations

in 468,220 seconds. For average degree k̄ = 15, the ASA method increased455

the average path length of the HH network from 4.0226 to 4.4050 after 100,000

iterations in 704,894 seconds, the proposed ERS method increased the average

path length from 4.0226 to 4.5775 after 100,000 iterations in 625,442 seconds.

For average degree k̄ = 5, the ASA method decreased the average path

length of the HH network from 6.8602 to 6.0278 after 100,000 iterations in460
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272,321 seconds; the proposed ERS method can decrease the average path length

from 6.8602 to 5.2800 after 100,000 iterations in 174,739 seconds. For average

degree k̄ = 10, the ASA method decreased the average path length of the HH

network from 4.5310 to 4.2282 after 100,000 iterations in 550,742 seconds and

the proposed ERS method decrease the average path length from 4.5310 to465

3.8065 after 100,000 in 378,879 seconds. For average degree k̄ = 15, the ASA

method decreased the average path length of the HH network from 4.0226 to

3.7865 after 100,000 iterations in 588,255 seconds and the proposed ERS method

decrease the average path length from 4.0226 to 3.4091 in 505,043 seconds.

In Table 5, we show the comparisons on time consuming and effect on com-470

munity structures from the initial average path length up to an given value, and

in Table 6 we show comparison results from initial average path length down to

an given value. It can be concluded that the proposed ERS method can increase

or decrease the average path length of the HH network at a faster rate. What

more, our method retains community structures well.475

Table 5: Comparison results in increasing average path length for HH Networks

N = 5000, k̄ = 5 N = 5000, k̄ = 10 N = 5000, k̄ = 15

APL
ERS ASA

APL
ERS ASA

APL
ERS ASA

time(s) m time(s) m time(s) m time(s) m time(s) m time(s) m

6.8607 0 0.8203 0 0.8203 4.5310 0 0.7598 0 0.7598 4.0226 0 0.7735 0 0.7735

7.1946 10614 0.8280 20896 0.5921 4.6755 88237 0.7906 189703 0.7486 4.1338 116092 0.7927 215998 0.7789

7.5233 30126 0.8355 32808 0.5533 4.8204 167338 0.8105 324392 0.7592 4.2444 221877 0.8132 398953 0.7871

7.8545 65154 0.8407 43937 0.5282 4.9645 247774 0.8232 462915 0.7659 4.3556 338066 0.8248 624121 0.7932

8.1862 109701 0.8464 58417 0.5282 5.1093 349472 0.8334 — — 4.4663 458903 0.8332 — —

8.5197 211961 0.8516 73893 0.4970 5.2331 468220 0.8396 — — 4.5775 625442 0.8395 — —

* Total number of nodes N ; average degree k; average path length APL; Run time in

seconds and modularity m; ”-” means that the corresponding average path length can

not be achieved within a reasonable period of time.

4.3. Effects of edge rewiring strategy on RL network model

The configuration model[39] describes a way to construct an undirected

graph on N nodes. For each node generates a degree independently from a

random variable with distribution F and creates “stubs”. Pick two “stub” ran-

domly among all “stubs” in the graph and join them. Obviously, there may be480

self-loops and multiple edges in the construction process. Here, we avoid the
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Table 6: Comparison results in decreasing average path length for HH Networks

N = 5000, k̄ = 5 N = 5000, k̄ = 10 N = 5000, k̄ = 15

APL
ERS ASA

APL
ERS ASA

APL
ERS ASA

time(s) m time(s) m time(s) m time(s) m time(s) m time(s) m

6.8607 0 0.8203 0 0.8203 4.5310 0 0.7598 0 0.7598 4.0226 0 0.7735 0 0.7735

6.5457 1970 0.7996 3403 0.6884 4.3869 13248 0.7338 10518 0.7049 3.8999 22290 0.7469 15441 0.7344

6.2266 4513 0.7713 16185 0.5562 4.2416 34424 0.6941 162436 0.6358 3.7772 56144 0.7085 — —

5.9136 8549 0.7292 — — 4.0969 64727 0.6348 — — 3.6547 105910 0.6519 — —

5.5968 16134 0.6559 — — 3.9513 115552 0.5376 — — 3.5318 200522 0.5509 — —

5.2800 174739 0.1952 — — 3.8065 378879 0.2534 — — 3.4091 505043 0.3233 — —

* Total number of nodes N ; average degree k; average path length APL; Run time in

seconds and modularity m; ”-” means that the corresponding average path length can

not be achieved within a reasonable period of time.

multiple edges and self-loop by modifying the degree of nodes in the construction

process. In generation our random network model, we construct edges within

communities by configuration model according to the internal degree sequence

of G Din
k = {din(vi)|τ(vi) = k}, 1 ≤ k ≤ c. We also call it a RL network model485

for abbreviation.

Analogously, the topological properties of RL network model are dependent

on the average degree and the mixing parameter of the network. Figure 7 shows

the changes of topological properties (including clustering coefficient, average

path length and modularity) which are associated with the change of the aver-490

age degree and the mixing parameter µ in the generated RL networks. In all

experiments, we set node number N = 5000, the number of communities c = 10,

power-law exponent of degree distribution α = 3, power-law exponent of com-

munity size distribution β = 2. We can also observe that the mixing parameter

increment of the network will cause general decreasing clustering coefficient and495

average path length.
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Figure 7: Structural properties of networks generated by RL model

4.3.1. Adjusting clustering coefficient in RL network model

In this section, we adjust clustering coefficient by edge rewiring strategy

ERS. Through several iterations, we can adjust the clustering coefficient of

the network effectively without changing the degree distribution. We compare500

the performance of our edge rewiring strategy on adjusting clustering coefficient

with that of Kim’s Monte Carlo method (KMC). Figures 8-9 shows the adjusting

performance on clustering coefficient in networks with average degree varying

from 5 to 15 with N = 5000, µ = 0.1 and c = 10, where N is node number, µ is

mixing parameter, and c is community number. The red lines correspond to the505

results of our method and the blue lines to those of KMC method. For average

degree k̄ = 5, 10 and 15, the clustering coefficient of the initial RL network

equals to 0.0080, 0.0184 and 0.0286, respectively.
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Figure 8: Comparison results of ERS and KMC in time on RL model when increasing clus-

tering coefficient under different average degree
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Figure 9: Comparison results of ERS and KMC in time on RL model when decreasing clus-

tering coefficient under different average degree

For average degree k̄ = 5, the KMC method increased the clustering co-

efficient of the RL network from 0.0080 to 0.0535 after 100,000 iterations in510

30,768 seconds, the proposed ERS method increased the clustering coefficient

from 0.0080 to 0.0538 after 100,000 iterations in 2,699 seconds. For average

degree k̄ = 10, the KMC method increased the clustering coefficient of the

RL network from 0.0184 to 0.0508 after 100,000 iterations in 32,736 seconds,

the proposed ERS method increased the clustering coefficient from 0.0184 to515

maximum 0.0487 after 100,000 iterations in 2,739 seconds. For average degree

k̄ = 15, the KMC method increased the clustering coefficient of the RL network

from 0.0286 to 0.0542 after 100,000 iterations in 34,504 seconds, the proposed

ERS method increased the clustering coefficient from 00.0286 to 0.0513 after

100,000 iterations in 2,724 seconds.520

For average degree k̄ = 5, the KMC method decreased the clustering coef-

ficient of the RL network from 0.0080 to almost zero after 3,889 iterations in

1,182 seconds; the proposed ERS method can decrease the clustering coefficient

from 0.0080 to almost zero after 10,350 iterations in 272 seconds. For average

degree k̄ = 10, the KMC method decreased the clustering coefficient of the RL525

network from 0.0184 to almost zero after 13,787 iterations in 4,648 seconds and

the proposed ERS method decrease the clustering coefficient from 0.0184 to al-

most zero after 19,300 iterations in 514 seconds. For average degree k̄ = 15,

the KMC method decreased the clustering coefficient of the RL network from

0.0286 to almost zero after 21,683 iterations in 7,599 seconds and the proposed530
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ERS method decrease the clustering coefficient from 0.0284 to almost zero after

40,250 iterations in 1,121 seconds.

In Table 7, we show the comparisons on time consuming and effect on com-

munity structures from the initial clustering coefficient up to an given value,

and in Table 8 we show comparison results from initial clustering coefficient535

down to an given value. It can be concluded that the proposed ERS method

can increase or decrease the cluster coefficient of the RL network at a faster

rate. What more, our method retains community structures well.

Table 7: Comparison results in increasing clustering coefficient for RL Networks

N = 5000, k̄ = 5 N = 5000, k̄ = 10 N = 5000, k̄ = 15

CG
ERS KMC

CG
ERS KMC

CG
ERS KMC

time(s) m time(s) m time(s) m time(s) m time(s) m time(s) m

0.0081 0 0.8192 0 0.8192 0.0184 0 0.7581 0 0.7581 0.0286 0 0.7724 0 0.7724

0.0348 1353 0.8008 17070 0.7935 0.0347 1276 0.7360 14664 0.7313 0.0410 1269 0.7513 14150 0.7502

0.0615 3485 0.7702 38284 0.7707 0.0510 3050 0.7082 32927 0.7013 0.0534 3089 0.7256 33082 0.7204

0.0882 5993 0.7359 — — 0.0673 5433 0.6778 56611 0.6678 0.0658 5488 0.6967 58517 0.6973

0.1149 9290 0.6992 — — 0.0836 8789 0.6413 — — 0.0782 8954 0.6619 — —

0.1416 13569 0.6643 — — 0.1002 13743 0.5927 — — 0.0905 13749 0.6257 — —

* Total number of nodes N ; average degree k; clustering coefficient CG; Run time in

seconds and modularity m; ”-” means that the corresponding clustering coefficient can

not be achieved within a reasonable period of time.

Table 8: Comparison results in decreasing clustering coefficient for RL Networks

N = 5000, k̄ = 5 N = 5000, k̄ = 10 N = 5000, k̄ = 15

CG
ERS KMC

CG
ERS KMC

CG
ERS KMC

time(s) m time(s) m time(s) m time(s) m time(s) m time(s) m

0.0081 0 0.8192 0 0.8192 0.0184 0 0.7581 0 0.7581 0.0286 0 0.7724 0 0.7724

0.0065 13 0.8169 122 0.8162 0.0148 49 0.7469 326 0.7417 0.0229 108 0.7549 486 0.7451

0.0049 31 0.8134 288 0.8129 0.0112 107 0.7353 753 0.7249 0.0172 241 0.7332 1138 0.7147

0.0033 50 0.8117 566 0.8117 0.0076 182 0.7204 1362 0.7072 0.0115 408 0.7059 2156 0.6793

0.0017 88 0.8083 855 0.8088 0.0040 259 0.7068 1362 0.7072 0.0058 656 0.6698 3700 0.6424

0 146 0.8063 1183 0.8071 0 514 0.6812 4648 0.6744 0 1119 0.6278 7599 0.6092

* Total number of nodes N ; average degree k; clustering coefficient CG; Run time in

seconds and modularity m.

4.3.2. Adjusting average path length in RL network model

In this section, we adjust average path length by edge rewiring strategy540

ERS. Through several iterations, we can adjust the average path length of the

network effectively without changing the degree distribution. We compare the
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performance of our edge rewiring strategy on adjusting average path length

with that of Andreas’s Simulated Annealing method(ASA). In each iteration,

ASA method selects a pair of parallel edges to execute edge rewiring as long as545

the edge exchange would change the global average path length to the desired

direction. In our method, we selects a pair of parallel edges in each iteration to

calculate its local efficiency on local average path length according to (7). We

choose the edge pair with the highest local efficiency to execute edge rewiring

every ten iterations.550

In Table 9, we show the comparisons on time consuming and effect on com-

munity structures from the initial average path length up to an given value, and

in Table 10 we show comparison results from initial average path length down

to an given value. However, there is one thing when improving average path

length by ASA method. Average path length will appear to decline and then555

rise. The reason is that the ASA method needs to set the initial temperature

and the drop rate of temperature, and calculate the accept probability. When

the parameter setting is not reasonable, it will have a greater probability to

accept the opposite situation. As the number of iterations increases, the tem-

perature decreases gradually, producing a smaller probability of accepting the560

opposite. Therefore, adjust process of improving average path length appear

first decline and then rise. In Table 9, we find that average path length does

not increase after 100,000 iterations in ASA method. However, ASA method

decreasing average path length more faster than our ERS method in Table 10.

The reasons may be related to the different structures of the network.565

5. Conclusion

In this paper, we propose a local structure based edge rewiring strategy to

adjust the clustering coefficient and average path length of a network. The ad-

justment of one pair of edges has a larger probability to affect the local clustering

coefficient or local average path length, which might help the algorithm escape570

from local extreme and reduce the computational cost. Therefore, our edge
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Table 9: Comparison results in increasing average path length for RL Networks

N = 5000, k̄ = 5 N = 5000, k̄ = 10 N = 5000, k̄ = 15

APL
ERS ASA

APL
ERS ASA

APL
ERS ASA

time(s) m time(s) m time(s) m time(s) m time(s) m time(s) m

6.5352 0 0.8192 0 0.8192 4.2682 0 0.7581 0 0.7581 3.8080 0 0.7724 0 0.7724

6.8642 6969 0.8259 122270 0.4048 4.4407 93836 0.7931 — — 3.9159 116588 0.7956 — —

7.1934 19299 0.8332 162491 0.4048 4.4631 185925 0.8157 — — 4.0224 229563 0.8121 — —

7.5226 35938 0.8400 203814 0.3778 4.7863 289069 0.8306 — — 4.3556 338066 0.8248 — —

7.8518 71349 0.8441 242440 0.3516 4.9582 395133 0.8406 — — 4.2988 550752 0.8375 — —

8.3849 154465 0.8503 — — 5.1310 526487 0.8473 — — 4.3434 617941 0.8403 — —

* Total number of nodes N ; average degree k; average path length APL; Run time in

seconds and modularity m; - means that the corresponding clustering coefficient can

not be achieved within a reasonable period of time.

Table 10: Comparison results in decreasing average path length for RL Networks

N = 5000, k̄ = 5 N = 5000, k̄ = 10 N = 5000, k̄ = 15

APL
ERS ASA

APL
ERS ASA

APL
ERS ASA

time(s) m time(s) m time(s) m time(s) m time(s) m time(s) m

6.5352 0 0.8192 0 0.8192 4.2682 0 0.7581 0 0.7581 3.8080 0 0.7724 0 0.7724

6.2900 2783 0.7973 796 0.7789 4.1786 10950 0.7386 2691 0.7273 3.7252 23454 0.7516 4950 0.7425

6.0524 6609 0.7669 1883 0.7273 4.0875 27937 0.7086 6629 0.6848 3.6419 62720 0.7153 12679 0.6988

5.8069 12737 0.7203 4284 0.6355 3.9978 54023 0.6625 12400 0.6282 3.5579 126116 0.6574 27950 0.6274

5.5675 23567 0.6413 9020 0.5113 3.9080 97406 0.5859 23177 0.5402 3.4742 237625 0.5572 66196 0.5014

5.3175 148180 0.2339 34450 0.2825 3.8170 397380 0.2580 58223 0.3738 3.3905 565787 0.3233 651458 0.2891

* Total number of nodes N ; average degree k; average path length APL; Run time in

seconds and modularity m.

rewiring strategy can provide border adjustment range of clustering coefficient

and average path length in reasonable computing time. Experiment results show

that our edge rewiring strategy can provide a boarder adjusting range for clus-

tering coefficient and average path length than standard Monte Carlo method575

and the Simulated Annealing method under the same computation condition.

As part of the future work, we can consider the numerous microscopic rules

such as the preferential attachment and triadic closure when adjusting topolog-

ical features of network. Besides, we can further consider the internal structure

of the network, such as motif distribution.580
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